Environment-Independent Moving Cast Shadow Suppression in Video Surveillance

March 16, 2013 at 12:13 pm by

Place: Large Lecture Room
Affiliation: Computer VIsion Centre and Dep. of Computer Science, UAB.

This thesis is devoted to moving shadows detection and suppression. Shadows could be defined as the parts of the scene that are not directly illuminated by a light source due to obstructing object or objects. Often, moving shadows in images sequences are undesirable since they could cause degradation of the expected results during processing of images for object detection, segmentation, scene surveillance or similar purposes. In this thesis first moving shadow detection methods are exhaustively overviewed. Beside the mentioned methods from literature and to compensate their limitations a new moving shadow detection method is proposed. It requires no prior knowledge about the scene, nor is it restricted to assumptions about specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene the values of the background image are divided by values of the current frame in the RGB color space. In the thesis how this luminance ratio can be used to identify segments with low gradient constancy is shown, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of the proposed method compared with the most sophisticated state-of-the-art shadow detection algorithms. These results show that the proposed approach is robust and accurate over a broad range of shadow types and challenging video conditions.

Thesis Ariel Amato
Watch the Video Presentation