Model free approach to human action recognition

October 22, 2012 at 12:30 pm by

Place: Large Lecture Room
Affiliation: Computer Science Dep. and Computer Vision Centre, UAB


Automatic understanding of human activity and action is very important and challenging research area of Computer Vision with wide applications in video surveillance, motion analysis, virtual reality interfaces, video indexing, content based video retrieval, HCI and health care. This thesis presents a series of techniques to solve the problem of human action recognition in video. First approach towards this goal is based on a probabilistic optimization model of body parts using Hidden Markov Model. This strong model based approach is able to distinguish between similar actions by only considering the body parts having major contributions to the actions. In next approach, we apply a weak model based human detector and actions are represented by Bag-of-key poses model to capture the human pose changes during the actions. To tackle the problem of human action recognition in complex scenes, a selective spatio-temporal interest point (STIP) detector is proposed by using a mechanism similar to that of the non-classical receptive field inhibition that is exhibited by most oriented selective neuron in the primary visual cortex. An extension of the selective STIP detector is applied to multi-view action recognition system by introducing a novel 4D STIPs (3D space + time). Finally, we use our STIP detector on large scale continuous visual event recognition problem and propose a novel generalized max-margin Hough transformation framework for activity detection.

Thesis Bhaskar Chakraborty
Watch the Video Presentation