Single Sensor Multi-Spectral Imaging

September 27, 2019 at 11:30 am by

Place: CVC Sala d’actes

Committee:

  • Dr. Arturo de la Escalera Hueso (Dpto. Ingeniería de Sistemas y Automática, Universidad Carlos III de Madrid)
  • Dr. Fadi Dornaika (Dpto. de Ciencias de la Computación e Inteligencia Artificial, Universidad del País Vasco)
  • Dr. Robert Benavente Vidal (Dept. Ciencies de la Computació and Centre de Visió per Computador, Universitat Autònoma de Barcelona)
  • Dr. Domènec Savi Puig Valls (Dept. Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili)
  • Dr. Daniel Ponsa Mussarra (Dept. Ciencies de la Computació and Centre de Visió per Computador, Universitat Autònoma de Barcelona)

Thesis Supervisor:

  • Dr. Angel D. Sappa (Centre de Visió per Computador)
Abstract:

The image sensor, nowadays, is rolling the smartphone industry. While some phone brands explore equipping more image sensors, others, like Google, maintain their smartphones with just one sensor; but this sensor is equipped with Deep Learning to enhance the image quality. However, what all brands agree on is the need to research new image sensors; for instance, in 2015 Omnivision and PixelTeq presented new CMOS based image sensors defined as multispectral Single Sensor Camera (SSC), which are capable of capturing multispectral bands. This dissertation presents the benefits of using a multispectral SSCs that, as aforementioned, simultaneously acquires images in the visible and near-infrared (NIR) bands. The principal benefits while addressing problems related to image bands in the spectral range of 400 to 1100 nanometers, there are cost reductions in the hardware and software setup because only one SSC is needed instead of two, and the images alignment are not required any more. Concerning to the NIR spectrum, many works in literature have proven the benefits of working with NIR to enhance RGB images (e.g., image enhancement, remove shadows, dehazing, etc.). In spite of the advantage of using SSC (e.g., low latency), there are some drawback to be solved. One of this drawback corresponds to the nature of the silicon-based sensor, which in addition to capture the RGB image, when the infrared cut off filter is not installed it also acquires NIR information into the visible image. This phenomenon is called RGB and NIR crosstalking. This thesis firstly faces this problem in challenging images and then it shows the benefit of using multispectral images in the edge detection task.

The RGB color restoration from RGBN image is the topic tackled in RGB and NIR crosstalking. Even though in the literature a set of processes have been proposed to face this issue, in this thesis novel approaches, based on DL, are proposed to subtract the additional NIR included in the RGB channel. More precisely, an Artificial Neural Network (NN) and two Convolutional Neural Network (CNN) models are proposed. As the DL based models need a dataset with a large collection of image pairs, a large dataset is collected to address the color restoration. The collected images are from challenging scenes where the sunlight radiation is sufficient to give absorption/reflectance properties to the considered scenes. An extensive evaluation has been conducted on the CNN models, differences from most of the restored images are almost imperceptible to the human eye. The next proposal of the thesis is the validation of the usage of SSC images in the edge detection task. Three methods based on CNN have been proposed. While the first one is based on the most used model, holistically-nested edge detection (HED) termed as multispectral HED (MS-HED), the other two have been proposed observing the drawbacks of MS-HED. These two novel architectures have been designed from scratch (training from scratch); after the first architecture is validated in the visible domain a slight redesign is proposed to tackle the multispectral domain. Again, another dataset is collected to face this problem with SSCs. Even though edge detection is confronted in the multispectral domain, its qualitative and quantitative evaluation demonstrates the generalization in other datasets used for edge detection, improving state-of-the-art results.

Watch the video presentation