Optical Flow in Driver Assistance Systems

October 10, 2013 at 11:00 am by

Place: Large Lecture Room
Affiliation: Computer VIsion Centre and Dep. of Computer Science, UAB



Motion perception is one of the most important attributes of the human brain.  Visual motion perception consists in inferring speed and direction of elements in a scene based on visual inputs. Analogously, computer vision is assisted by motion cues in the scene. Motion detection in computer vision is useful in solving problems such as segmentation, depth from motion, structure from motion, compression, navigation and many others. These problems are common in several applications, for instance, video surveillance, robot navigation and advanced driver assistance systems (ADAS). One of the most widely used techniques for motion detection is the optical flow estimation. The work in this thesis attempts to make optical flow suitable for the requirements and conditions of driving scenarios. In this context, a novel space-variant representation called reverse log-polar representation is proposed that is shown to be better than the traditional log-polar space-variant representation for ADAS. The space-variant representations reduce the amount of data to be processed. Another major contribution in this research is related to the analysis of the influence of specific characteristics from driving scenarios on the optical flow accuracy.  Characteristics such as vehicle speed and road texture are considered in the aforementioned analysis. From this study, it is inferred that the regularization weight has to be adapted according to the required error measure and for different speeds and road textures. It is also shown that polar represented optical flow suits driving scenarios where predominant motion is translation. Due to the requirements of such a study and by the lack of needed datasets a new synthetic dataset is presented; it contains: i) sequences of different speeds and road textures in an urban scenario; ii) sequences with complex motion of an on-board camera; and iii) sequences with additional moving vehicles in the scene. The ground-truth optical flow is generated by the ray-tracing technique. Further, few applications of optical flow in ADAS are shown. Firstly, a robust RANSAC based technique to estimate horizon line is proposed. Then, an egomotion estimation is presented to compare the proposed space-variant representation with the classical one. As a final contribution, a modification in the regularization term is proposed that notably improves the results in the ADAS applications. This adaptation is evaluated using a state of the art optical flow technique. The experiments on a public dataset (KITTI) validate the advantages of using the proposed modification.
Thesis Naveen Onkarappa
Watch the Video Presentation