Leveraging Unlabeled Data for Crowd Counting by Learning to Rank (CVPR’18)

In this research, We propose a novel crowd counting approach that leverages abundantly available unlabeled crowd imagery in a learning-to-rank framework. To induce a ranking of cropped images , we use the observation that any sub-image of a crowded scene image is guaranteed to contain the same number or fewer persons than the super-image. This allows us to address the problem of limited size of existing datasets for crowd counting. We collect two crowd scene datasets from Google using keyword searches and query-by-example image retrieval, respectively. We demonstrate how to efficiently learn from these unlabeled datasets by incorporating learning-to-rank in a multi-task network which simultaneously ranks images and estimates crowd density maps. (project page+code)

Comments are closed.