Transferring GANs: generating images from limited data (ECCV’18)

In this research, we study domain adaptation applied to image generation with generative adversarial networks. We evaluate several aspects of domain adaptation, including the impact of target domain size, the relative distance between source and target domain, and the initialization of conditional GANs. Our results show that using knowledge from pre-trained networks can shorten the convergence time and can significantly improve the quality of the generated images, especially when target data is limited. (project page+code)

Comments are closed.