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Fine-tuning a pre-trained network

Slide credit: Victor Campos, ά[ŀȅŜǊ-ǿƛǎŜ /bb ǎǳǊƎŜǊȅ ŦƻǊ ±ƛǎǳŀƭ {ŜƴǘƛƳŜƴǘ tǊŜŘƛŎǘƛƻƴέ(ETSETB 2015)
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Fine-tuning a pre-trained network

Fine-tuning: High learning rate in new layer, and low learning rate in all other layers.

Previously,finetuning..
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Task A
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Task B
(eg. image retrieval)Part II: Off-the-shelf features
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Image classification: image as an input, label as output

spatial coded image representations
(like spatial pyramids)

x y Fd d d³ ³

orderlessimage 
representation 
(like BOW)

1 1 Fd³ ³

Previously, off-the-shelf features..



Two deep lectures in M5

Global Scale
όǘƻŘŀȅΩǎ ƭŜŎǘǳǊŜύ

Local Scale
(next lecture)

Deep ConvNets for Recognition at...



Orange

Image Classification
Image classification: image as an input, label as output

How to process non-squared images ?

resize zero padding largest centred square



Local object recognition

object localization

(single object)

object detection

semantic segmentation



Classification+LOCALIZATION

slide credit: Li, Karpathy, Johnson



Localization as regression
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Localization as regression
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Localization as regression
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