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Abstract

Anisotropic differential operators are widely used in image enhancement processes.
Recently, their property of smoothly extending functions to the whole image domain has
begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures
existence of a unique solution. This condition is too restrictive for operators designed to
extend image level sets: their own functionality implies that they should restrict to some vector
field. The diffusion tensor that defines the diffusion operator links anisotropic processes with
Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties
generated by the vector fields of positive eigenvalues, provided that an integrability condition
is satisfied. We will use that any smooth vector field fulfills this integrability requirement to
design line connection algorithms for contour completion. As application we present a seg-
menting strategy that assures convergent snakes whatever the geometry of the object to be
modelled is.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Contour completion; Functional extension; Differential operators; Riemmanian manifolds;
Snake segmentation
1077-3142/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2004.12.001

q This work is partially supported by the ‘‘Ministerio de Ciencia y Tecnologia’’ Grant TIC2000-1635-
C04-04.

* Corresponding author.
E-mail addresses: debora@cvc.uab.es (D. Gil), petia@cvc.uab.es (P. Radeva).

mailto:debora@cvc.uab.es 
mailto:petia@cvc.uab.es 


D. Gil, P. Radeva / Computer Vision and Image Understanding 99 (2005) 110–125 111
1. Introduction

The fact that solutions to a diffusion equation are infinitely differentiable has been
largely used in image enhancement and restoration. However, the capability of
smoothly extending functions to the whole image domain has been hardly exploited.
Only in recent years some authors have used this property to extend vector fields [22]
and, to some extend, to fill-in gaps in the image [2]. Object disocclusion, image res-
toration (in-painting), shape reconstruction, splines interpolation or, even, segmen-
tation by snakes are some of the different fields in image processing that address
the issue of line connection.

Object disocclusion and image in-painting focus on filling in gaps in an image in
such a way that level lines arriving at gaps boundaries are smoothly prolonged in-
side. Following the Gestalt principle of good continuation, recent techniques
([2,5,17,18,12]) base on the way humans join unconnected curves to reconstruct
the underlying shape. According to psychophysicist studies [14], the curves that
reconstruct objects should minimize an energy functional involving length and cur-
vature. To such purpose they seek for the function, which corresponds to the recon-
structed image, that achieves a simultaneous minimum for all its level sets. The
continuous variational problem includes a fourth order term [5] that troubles the nu-
meric implementation. Solutions, up to our knowledge, include simplification of the
functional, specific numeric algorithms [5], approximations to the solution [17] or the
introduction [2] of an extra function to be minimized.

The second group of techniques (shape reconstruction and segmentation) deal
with single contour completion. Shape recovery aims at obtaining a smooth model
of shapes from a unconnected set of points, meanwhile object image segmentation
must face connecting a set of points that lie on the contour of the objects of interest.
An efficient way of modelling uncompleted shapes is by means of a snake [3,4,15].
Snakes or active contours correspond to minimums of an energy functional. Classic
snakes [15] and geodesic snakes [3,4] are the two most popular energy designs recog-
nized by the image processing community. Classic snakes produce smooth models of
shapes but their convergence strongly depends on the definition of the external en-
ergy (commonly, distance or edge based map) and the snake parameterization. In
spite of the improvements that the gradient vector flow (GVF)/generalized gradient
vector flow (GGVF) [22] provides, classic snake convergence to concave curves is
still poor. In the case of geodesic snakes, the internal and external energies join to
produce a functional that measures the length of the snake in a Riemmanian man-
ifold with the image gradient external energy as metric. Their level sets formulation
[20] ensures convergence to an arbitrary number of objects. However, minimizing
curve length leads to piece wise linear interpolation of the set of points and shock
formation during the level sets evolution makes this formulation computationally
expensive [19]. Moreover, balloon forces used to increase convergence to contours
might push the snake into the object contour in the presence of large gaps.

In this paper, we address level sets completion for segmenting purposes. We con-
sider the problem of image segmentation as the recovery of smooth models from a set
of points, usually unconnected, on the objects of interest. The problem can be split in
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two main steps: interpolation of the curve segments (shape restoration) and compu-
tation of a smooth representation of shapes as compact as possible (e.g., by paramet-
ric snakes). The goal of this paper is to develop an anisotropic contour closing (ACC)
technique as a tool for shape restoration in a first step for image segmentation.

We separate the problem of level sets completion into computing a smooth vector
field on the image domain representing the unit tangent to the set of curves to be
reconstructed and then integrate it to obtain the corresponding level sets. Like in dis-
occlusion and in-painting techniques, we also suggest a level sets formulation to
simultaneously integrate all curves. The novelty consists in embedding the integra-
tion problem into the framework of functional extension by means of second order
differential operators given in divergence form via a symmetric diffusion tensor [7]. In
the context of level sets completion the tensor should degenerate/cancel in the gra-
dient direction. In the present paper, we perform a study of diffusion tensors from
the point of view of differential geometry which provides us with a criterion to decide
when a degenerate tensor still produces solvable PDEs. This reduces the completion
problem to the definition of a smooth vector field representing the level sets to be
extended, which brings our technique very close to the stochastic completion fields
of [12]. Our second contribution is a fast reliable extension of vector fields based
on the properties of the structure tensor [13]. Our experiments illustrate robustness
of ACC to handle reconstruction of T-junctions and corners, as well as its capability
of recovering illusory contours. Contours interpolated with ACC are, like geodesic
snakes, given in an implicit representation as level sets of an image. For an explicit
compact encoding parametric B-snakes are a sensible choice. To ensure convergence
to shapes we use a previously developed technique [9] which in combination with
ACC yields a segmenting strategy that successfully copes with the poor convergence
of snakes to concave shapes. Results presented in the second part of the experimental
Section show that the convergence rate compares to that of geodesic snakes, per-
forming even better in noisy images and real images with textured backgrounds.

The paper is organized as follows. Section 2 deals with the general setting of func-
tional extension, as well as, exposes the geometric theory about restricted diffusion
tensors. A throughout description of ACC is given in Section 3, including the differ-
ent approaches to extension of vector fields in Section 3.1. The experimental Section
4 presents results showing accuracy of shapes restored with ACC in Section 4.1 and
efficiency of the segmentation algorithm compared to geodesic snakes in Section 4.2.
Conclusions and future lines of research are exposed in Section 5.
2. Restricted anisotropic operators

Any second order partial differential operator, namely L, defines, both, a diffusion
process:

ut ¼ Lu with uðx; 0Þ ¼ u0ðxÞ
and a functional extension:

Lu ¼ 0 with ujoX ¼ f ð1Þ
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for oX an n � 1 dimensional manifold on Rn and f the function on oX we want to
extend. Solutions to (1) are computed by means of the evolution diffusion equation:

ut ¼ Lu with ujoX ¼ f ð2Þ

as they correspond to its steady states.
In all cases, existence and uniqueness (in the weak sense) of smooth solutions is

guaranteed if L is strongly elliptic [7,23], that is, when it defines a scalar product
on some functional space. However, extensions focused on level sets continuation
should restrict diffusion to a vector field representing the level sets of the solution.
Thus, the hypothesis of strong ellipticity is relaxed and we must tackle with operators
that degenerate on some vector fields.

Let us give some geometric requirements over the non null space of L that ensure
existence of solutions in the case of an operator given in divergence form. In this
case, we have that:

Lu ¼ divðJruÞ
for J a symmetric (semi) positive defined tensor (quadratic form). Strong ellipticity
means that all eigenvalues of J are strictly positive, meanwhile tensors having a null
space (kernel) of positive dimension will produce degenerate operators. Because any
symmetric (semi) positive defined tensor defines a scalar product/metric, we will
embed elliptic operators into the framework of Riemmanian geometry and use tools
of differential geometry to analyze solvability of degenerate operators. Details
regarding results on differential geometry can be found in [21].

Let ðRn; gÞ be a Riemmanian manifold with the metric, g, given by a tensor J.
Since the matrix J is symmetric, it diagonalizes [16] (considered as linear map) in
an orthonormal basis that completely describes the metric. If Q is the coordinate
change, then we have that, as bilinear form, J = QKQt, for K the eigenvalue matrix.
In this context, we can talk about isotropic diffusion (equal eigenvalues), anisotropic
diffusion (distinct and strictly positive eigenvalues) and restricted diffusion1 (in the
case of some null eigenvalues), respectively. That is, the restricted diffusion is given
by a diffusion tensor, ~J , defined by the following eigenvalue matrix:
Indeed we will only consider the homogeneous case ki = 1, for all i. Let us determine

under what conditions a degenerated metric makes sense. Let n1, . . .,nk be the eigen-
vectors of positive norm and denote by D ¼ hn1; . . . ; nki the vector space (distribu-
tion) they generate. If such vector space was the tangent space to a sub manifold of
Rn (integral variety of D), then the metric ~J would be the projection onto its tangent
1 The word restricted applies to the the fact that diffusion restricts to the manifolds generated by the
vectors of positive eigenvalues.
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space. Consequently a diffusion process governed by ~J would not take place in the
whole space Rn but just on the integral manifolds, namely M, of the distribution.
We claim that this integrability condition and compactness are the only requirements
for a unique solution to (1) given by a restricted diffusion tensor ~J :

Proposition 2.1. Let ~J be a degenerate metric tensor on Rn. Assume that the

distribution D ¼ hn1; . . . ; nki generated by the eigenvector fields of positive eigenvalues

is integrable. Let f = f (x1, . . .,xn) be a smooth function defined on a sub-manifold oX
enclosing a compact volume. Then there exists a unique solution to:

divð~JruÞ ¼ 0 with ujoX ¼ f ð3Þ

which is as smooth as the boundary function f.

Proof. The basic idea is that the differential operator restricts to a elliptic operator
on each of the integral manifolds, M, defined by the distribution D. By a classic
result on heat operators on manifolds [6], we have that it exists a unique smooth
solution that extends f|oX \ M to the whole leave M. The fact that by Frobenius The-
orem these manifolds foliate (i.e., decompose the entire space into layers) the space
yield the existence of a unique solution to the higher dimensional problem [10]. h

The integrability condition ensuring existence of solutions is a standard result on
differential manifolds known as the Frobenius Theorem [21]. The latter states that
there exist integral manifolds for a distribution D provided that the vectors generat-
ing D fulfill an algebraic condition (D involutive). That is, a local condition on the
potential tangent spaces ensures that there will exist manifolds having D as tangent
space. To be precise, the integrability condition is given in terms of the Lie bracket of
n1, . . .,nk and, intuitively, measures whether the integral curves of the fields generated
by the distribution can form a mesh or not. We note that for k P 2 the integral
curves of the vectors nk will not, in general, tangle into a web. For instance,
n1 = oy = (0,1,0) and n2 = �yox + oz = (�y, 0,1) generate the curves of Fig. 1B,
which, since do not knit a mesh, will never produce a surface. Meanwhile, the inte-
gral curves of n1 = oy and n2 = xox + oz form mesh surfaces (Fig. 1A) which decom-
pose the space in layers (leaves of the foliation).
Fig. 1. Frobenius theorem: integrable (A) and nonintegrable (B) distributions.



Fig. 2. General extension: function to extend (A), extension vector (B), intermediate step (C), and final
extension (D).

Fig. 3. Singular case: vector field (A), extension (B), and angular cut (C).
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In the two dimensional case, oX is a curve, the distribution reduces to a single vec-
tor field, n, and the integrability condition is automatically satisfied. The only
requirement, if we want smooth extensions, is that n must foliate the space, that
is, two different integral curves do not cross. Fig. 2 illustrates the general problem
of functional extension. The function to be extended is a color map defined on the
ring of Fig. 2A. The vector, n, guiding extension is the sinusoidal of Fig. 2B where
the extension scope has been restricted to the area enclosed by the ring. The effect of
restricting diffusion is that the final extension (Fig. 2D) changes linearly along the
level lines of n. Let us show the reader that the hypothesis that n induces a foliation
on the domain is essential to guarantee convergence to smooth functions. The vector
shown in Fig. 3A has a singular point at the center of the image since all its integral
curves meet there. Although the extension process still exists, it converges to the
sharp image of Fig. 3B, which has a jump discontinuity at the center of the image
as it shows the angular cut of the mesh of Fig. 3C.

The case we will focus on is when the manifold oX is included in one of the leaves
of the foliation associated to D and f|oX = const, which corresponds to curve contin-
uation and surface gap filling.
3. Anisotropic contour closing

We model the contour completion process as follows. Denote by c0 the set of
points to connect and assume that n is a unitary vector field defined on a band
around c0 that smoothly extends its unit tangent. The anisotropic completion of con-
tours we suggest is the extension process given by:



Fig. 4. Gap filling: unconnected clover (A), ridges of its mask extension (B and C), image graph of
uncomplete clover (D), intermediate step (E), and closing (F).
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ut ¼ divð~JruÞ with ujc0 ¼ u0 ð4Þ

with u0 the characteristic function of the opened contours:

vc0 ¼
1 if x 2 c0;

0 otherwise

�

and the diffusion tensor ~J a degenerate metric tensor with eigenvectors g = n^ and n
and eigenvalues k1 = 0 and k2 = 1. By the properties given in Section 2, the final state
will be a binary map of a closed model of the uncomplete initial contour. Intuitively,
we are integrating the vector field n, that is, we are interpolating the unconnected
curve segments along it. Fig. 4 illustrates the different stages in the process of gap
filling for an incomplete clover (Fig. 4A). Ridges of the final characteristic function
(Fig. 4F) correspond to the reconstructed complete contour (Fig. 4C).

From the above considerations, computation of an extension conforming to the
image reduces to giving a smooth vector field representing its level curves.

3.1. Coherence vector fields

This section is devoted to the computation of an extension, n, of the unit tangent
of an unconnected curve c0 smooth in a band surrounding the curve. Following the
ideas presented in [8], we use the structure tensor, ST, upon a suitable function to
compute the vector field n. The structure tensor is usually employed to determine
the direction of maximum contrast change of an image I in a robust way [23]. Since
it is defined [13] as the mean of the projection matrices onto a regularized image gra-
dient, the eigenvector of minimum eigenvalue, n, corresponds to the level sets unit
tangent direction. Besides, since orientations do not play any role in the diffusion
process, the eigenvectors of ST serve to design diffusion tensors [23]. Let I be an
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embedding function for c0 and note by Gq a centered gaussian of variance q. Then
ACC tensor is defined by:

ut ¼ divðQ~KQtruÞ
with Q the eigenvectors of ST q ¼ Gq � rIrrITr

� �
;

~K ¼
0 0

0 1

� �
and rIr ¼ Gr � rI :

Since, STq is the solution to the heat equation with initial condition the projection
matrix onto the embedding function gradient, we have that n (see scheme in Fig.
5) conforms to the Gestalt principle of good continuation (i.e., it is a infinitely dif-
ferentiable field [10] that regularizes and extends c0 tangent space). The choice of
the embedding function hinges upon the particular application we handle: object seg-
mentation or disoclusion and shape restoration.

(1) Image based vector fields: In this case, I is set to be the same original image or
any map encoding its main features (edge, Gabor energy). This is the best choice
for closing objects in real scenes with segmentation purposes, provided that level
sets are differentiable curves. Fig. 6B represents ACC diffusion tensor for the
golfer in Fig. 6A and the final extension Fig. 6C. In the case of object disocclu-
sion and shape completion, original images contain no information on tangent
space at c0 gaps. This forces designing n on the grounds of one of the following
Gestalt principles:

(2) Linear vector fields (LVF): They are defined by setting the embedding function,
I, to be the characteristic function vc0. The associated ACC yields closed shapes
that resemble the one we would get if we drew the tangent at the boundary points
of the original curve and intersected the lines. Their major drawback is that if the
angle between the unit tangent of two consecutive pieces is too acute the vector
field becomes singular (Fig. 7A), thus yielding wrong models (Fig. 7D).

(3) Distance vector fields (DVF): They correspond to taking I to be a function rep-
resenting the evolution of c0 under a monotonous geometric flow, ct ¼ b~n, with
b > 0. That is, I level sets are characterized as the set of points that are at a given
distance from c0. Therefore closures (Fig. 7E) base on the principle of proximity
for joining boundary points. Although this yields smooth models which are not
singular at corners (Fig. 7B), in the case of a distance between contours smaller
than the gap size, LVF is preferable, as DVF closed models might not conform
to the shape yielded by our visual system (Fig. 7F).
Fig. 5. Vector definition: embedding function (A), tangent space (B), and vector n (C).



Fig. 6. ACC closing of real image: golfer (A), n (B), and closure (C).

118 D. Gil, P. Radeva / Computer Vision and Image Understanding 99 (2005) 110–125
Fig. 7. Differences between LVF and DVF.
4. Results

To illustrate the performance of our contour closing method, two different exper-
imental issues should be addressed. First, accuracy of shape models recovered by
ACC with examples showing the practical way of choosing between DVF and
LVF. Second, we present an application to object segmentation with a comparison
to geodesic snakes.

4.1. Closing contours with ACC

In this experimental section, we will show the reliability of the shapes recovered by
ACC using DVF/ LVF to guide the restricted extension process. Fig. 8 shows a set of
real images (Figs. 8A–C) and a character �S� with uniform noise added (Fig. 8D).



Fig. 8. Test set. Real images: tiger (A), brain (B), and fingerprint (C). Noisy images: character �S� (D) and
smoothed image (F).
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The different image features used to select points lying on the objects of interest
are edges for all images but for the fingerprint, which bases on ridges. We have cho-
sen the following standard algorithms to compute them: Canny detector for edges
and curvature for ridges. The uncompleted contours in Fig. 9 have been extracted
after filtering images with a gaussian of r = 2, meanwhile, in the case of the tiger
(Fig. 10), we use r = 4 and select the largest segments (Fig. 10B). Contours include
cases deserving special care: corner restoration (leafs in foreground plants in Fig.
10B), T-junctions (brain folds in Fig. 9A), dense lines prone to merge (fingerprint
in Fig. 9C), and illusory contours (tiger tail and spine in Fig. 10B).

The numeric scheme used to compute solutions to (4) is an explicit Euler scheme
for nonlinear heat equations stopped by stabilization of the speed of the evolution
[10]. Scale parameters (regularization scale r and integration scale q) for the compu-
tation of Coherence Vector Fields should reach a compromise between gap filling
(large scales) and separability of distinct curve structures (small scales). To such pur-
pose we have chosen the following set of parameters: {r = 2,q = 4} for one con-
nected component shapes (brain and �S� character), {r = 0.5,q = 2} for the tiger
and {r = 0.5,q = 1} for the fingerprint. In the case of large gaps (Fig. 10B and
Fig. 9B) vector fields are dynamically updated over ridges of the evolved images
every 500 iterations. We have used the ridgeness measure described in [1] to compute
ridges in the case of smooth contours (fingerprint and noisy �S�) and Gabor energy
for contours with T-junctions and sharp corners (brain and tiger). According to
the theoretic analysis given in Section 3.1, distance based vector fields properly re-
cover a model of corners and T-junctions, meanwhile linear fields avoid merging
in the contours to complete. This motivates using the distance based DVF for



Fig. 9. Uncompleted contours.

Fig. 10. Textured backgrounds: original edges (A) and largest ones (B).
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restoration of contours in Figs. 9A and B, Fig. 10B and a linear LVF closing in the
case of the fingerprint (Fig. 9C).

The final states achieved by ACC are the characteristic functions representing the
reconstructed shapes shown in Fig. 11 and their ridges yielding contour closures are
the images of Fig. 12. Since they base on distance maps, DVF closings recover shape
curvatures, such as the concave part of the character �S� in Fig. 12C, and also the
acute angles of the plants leafs (Fig. 12A). On the other hand, thanks to its linearity,
LVF fingerprint closure (Fig. 12D) does not merge line ends at the boundary and
yields an accurate closure because of a small gap size without acute angulation.

Reliability of the restored shapes is better appreciated in the close-ups of Fig. 13,
which shows three especial cases: T-junctions (Fig. 13A), illusory contours (Fig. 13B)
and dense lines (Fig. 13C). T-junctions of the brain folds are properly reconstructed
(Fig. 13D) because level sets of distance maps produce reliable models. Illusory con-
tours of the tiger tail (Fig. 13E) are achieved thanks to the Gestalt principle of prox-
imity satisfied by DVF closures. Finally, the smallest scale used to compute the linear
interpolation yielded by LVF ensures that lines do not merge in the model recovered
for the fingerprint (Fig. 13F).
Fig. 11. Extensions of tiger (A), brain (B), �S� (C), and fingerprint (D).



Fig. 12. Reconstructed contours using DVF (A–C) and LVF (D).

Fig. 13. Restoration of T-junctions (D), of brain folds (A), illusory contours (E), of tiger tail (B), and
recovery of the dense lines (F), and of the fingerprint (C).
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4.2. Application to object segmentation

Smooth shape representation plays an important role in image segmentation.
Connecting a set of points that lie on the object of interest, whatever its geometry,
is still an open question. Parametric snakes [15] and geodesic snakes [3,4] are the
two techniques most commonly used by the image processing community. On one
hand, in spite of yielding smooth models, poor convergence to concave shapes limits
classic snakes applicability. On the other hand, geodesic snakes convergence to mul-
tiple objects, does not compensate for their slow convergence to piece wise linear
curves prone to penetrate into contours large gaps. We argue that the framework
of classic snakes provides with an efficient way of shape modelling, both in terms
of computational time and compact representation of a reliable model of the shape.
The segmenting strategy we propose is the following.
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4.2.1. The segmenting strategy

We base image object segmentation on the approximation of a set of (possibly
unconnected) points that conform to given characteristics exclusive to the contour
of the object we want to model. We consider that the object is successfully segmented
once we have a closed contour approaching this set of points. We propose the fol-
lowing strategy to model uncompleted contours. First, we apply functional extension
using ACC to the selected set of points to produce a closed contour. Ridges of the
final extension are the curve of level zero of the curvature distance map introduced
in [9]. This convergent map [10] bases on using the mean curvature flow to propagate
the zero level curve. For the outward propagation, we evolve the initial shape under
the flow given by negative curvature (5) until it reaches the stable convex shape and,
then, use an outward Euclidean distance map. For the inward propagation we use
evolution under positive curvature (5) until the curve becomes circular and then
use the Euclidean distance map to this circle to complete it. The gradient of this
map is called curvature vector flow (CVF).

Evolution by negative curvature Evolution by positive curvature

ct ¼ minððj; 0ÞÞ~n; ct ¼ maxððj; 0ÞÞ~n:
ð5Þ
4.2.2. Segmentation of real images

We devote this last experiment to assessment of the segmenting capabilities of the
proposed strategy in comparison to geodesic snakes. We have used standard
formulations:

Geodesic evolution : ct ¼ ðagðjrI jÞðV 0 þ jÞ � ð1� aÞhrgðjrI jÞ;~niÞ~n;
Parametric energy : EðcÞ ¼

R
cðajjc0jj

2 þ bjjc00jj2 þ EextÞdu:

The set of test images (a deer, a horse, and a golfer in Fig. 14) include textured back-
grounds (grass and ground in the deer and horse images) and weak edges (golfer
legs). To minimize the impact of textured backgrounds, edges (Fig. 14) have been ex-
tracted using the visual inhibition approach given in [11] and a curve length filtering.
The closed contours used to compute CVF (overimpressed in Fig. 15) result from
interpolating the largest edges. Geodesic snake metric has been computed with
Fig. 14. Set of real images to segment with their edges.



Fig. 15. ACC closure.
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r = 2 for the golfer and r = 4 in the case of the deer and horse. Because such scales
are prone to yield open image edges in the metric g, the value of V0 was chosen to
avoid penetrating into contours ({V0 = 0.1,a = 0.3}). For parametric snakes the
parameter set was tuned to yield smooth curves, {a = 0.3,b = 0.6}. Final results
of the segmentation are shown in Fig. 16 for geodesic snakes and Fig. 17 for
CVF-snakes: dashed contours are the initial snakes and solid ones the final models.

On one side, convergence of geodesic snakes is only guaranteed for almost tex-
ture-free backgrounds like the deer in Fig. 16A. In the presence of more prominent
texture in image background (horse) geodesic snakes fail to stabilize at the right
boundaries, even if they are initialized close to the contour of interest. In the case
of the horse (Fig. 16B) the snake still enters one of the back legs and, though a close
initialization, the edge due to the shadow (bottom) traps the snake so it fails to adapt
to the horse belly. In spite of using a low r for the golfer (Fig. 16C), the geodesic
model has swallowed both legs because their contrast change is not strong enough.
On the other side, because segmentations only rely on the accuracy of the closed
models given by ACC (CVF guarantees snake convergence), the overall performance
is better than the geodesic model. The deer model (Fig. 17A) is smoother than its
geodesic counterpart. In the case of the horse (Fig. 17B), our model perfectly cap-
tures its legs, tail and belly, yielding a smooth silhouette, thanks to a high b (curva-
Fig. 16. Initial and final geodesic snakes.



Fig. 17. Initial and final CVF-snakes.
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ture) term. In the case of the golfer (Fig. 17A), ACC closure guarantees the right cap-
ture of the legs weak edges and stick.
5. Conclusions

This paper addresses the issue of contour completion oriented to object segmen-
tation. Completion of contours is considered as a particular case of functional exten-
sion driven by a diffusion tensor that restricts to some curves of the image domain. In
this context, we present a novel approach to diffusion processes from the point of
Riemmanian geometry. Classic results on differential geometry yield sufficient condi-
tions for the unique existence of solutions to a restricted anisotropic extension/diffu-
sion process. The fact that a smooth vector field automatically satisfies the former
conditions reduces contour completion to the definition of a vector field representing
the tangent of the contours to be closed. For a reliable and efficient computation of
the latter, we suggest using the structure tensor to define vector extensions conform-
ing with tangents of unconnected contours at gap boundaries (principle of good con-
tinuation). The segmenting strategy is a combination of ACC closing and a distance
map based on the evolution of closed contours by min/max curvature introduced in
[9]. Based on the grounds that a distance map represents the evolution of an initial
curve in time under a geometric flow, it tracks evolution by mean curvature flow to
avoid shocks. The fact that the geometry of the initial curve is taken into account,
makes snake convergence robust whatever the concavity of the zero level curve.

Experiments illustrate accuracy of shape models obtained by ACC and its capa-
bility of handling corner, T-junction and illusory contours. Segmentation of real
images show that our strategy surpasses parametric snakes performance and is com-
petitive with geodesic snakes, performing even better in textured backgrounds.
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