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In this article, we perform an extended analysis of different face-processing techniques for gen-
der recognition problems. Prior research works show that support vector machines (SVM) achieve
the best classification results. We will show that a nearest neighbor classification approach can
reach a similar performance or improve the SVM results, given an adequate selection of fea-
tures of the input data. This selection is performed using a dimensionality reduction technique
based on a modification of nonparametric discriminant analysis, designed to improve the near-
est neighbor classification. The choice of nearest neighbor is especially justified by the use of a
large database. We also analyze a nonlinear algorithm, locally linear embedding, and its super-
vised version. Given that this technique is focused on preserving the local configuration of the
neighborhood of each point, it should be a priori a good dimensionality reduction technique for
extracting good features for nearest neighbor classification. A complete comparative study with
the most classical face-processing techniques is also performed. © 2005 Wiley Periodicals, Inc.

1. INTRODUCTION

In the last few years, computational resources have become cheaper, smaller,
and more powerful. This evolution will allow the progressive introduction of tech-
nology in our everyday lives and new applications dealing with cameras will
emerge. Some of the most important are related to face-classification techniques.
Typical examples are face recognition applied to security systems, face verifica-
tion in authentication schemes, face and gesture analysis in user friendly inter-
faces, and gender and ethnicity recognition for applications of reactive marketing.
In this article, we will deal with a gender recognition problem. We will show dif-
ferent schemes to solve it, and the results can be taken into account as a bench-
mark of techniques when we need to solve more general face classification tasks.
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We propose a nearest neighbor (NN) approach for gender recognition. This
election can be justified by the use of large face databases and by taking advantage
of proper feature extraction techniques. We will evaluate different feature extrac-
tion techniques applied to NN classification of gender in human faces, showing
that the nearest neighbor approach can compete with the best techniques for this
task, such as Principal Component Analysis (PCA)1 and Support Vector Machines.2

To extract the optimal features for nearest neighbor classification we will evaluate
linear and nonlinear techniques, and we will also show that the adequate modifi-
cation of a discriminant analysis algorithm can provide the best features for near-
est neighbor classification. The main goal of this modification is to minimize the
intraclass variations while the extraclass variance is maximized.

Data dimensionality reduction techniques have often been used in pattern rec-
ognition, and have been applied to different objectives. One possible application
is to use these techniques for data compression, reducing the amount of data of
each sample by projecting the sample in a reduced space. Another application is
the improvement of the classification algorithms by selecting the features that best
separate the different classes or by simply reducing the noise present in natural
images. Sometimes the reduction of dimensionality helps the training of the clas-
sifier too, by reducing the number of parameters to estimate.

Perhaps the most popular technique applied to face classification is Principal
Component Analysis and eigenfaces.3,4 The goal in PCA is to find a linear projec-
tion to a low dimensional subspace, trying to preserve the maximum amount of
variance of the input data. Other criteria can be applied to find the optimal projec-
tion, such as statistical independence (Independent Component Analysis5 ) and non-
negativity (Nonnegative Matrix Factorization6 ). In the next section we will give
an overview of the state of the art of gender recognition.

If we take into account the labels of the training samples in the dimensional-
ity reduction process, we can find the most discriminative features in a reduced
space, where the distance between different class samples is maximized. The clas-
sic discriminative technique is Fisher Linear Discriminant (FLD).7 But FLD has
two important drawbacks: The resulting dimensionality is upper bounded by the
number of classes, and this complicates its application to the gender recognition
problem (where there are only two classes). FLD also assumes Gaussian densities
distributions in sample data, which degrades the performance in the case of more
general distributions. In Section 3 we will introduce the Nonparametric Discrimi-
nant Analysis8 and our modification of the original algorithm to overcome this
drawbacks.

Another approach to dimensionality reduction is the use of nonlinear tech-
niques. One of them is Locally Linear Embedding (LLE),9 which will be analyzed
in Section 4. The goal of LLE is to find the low dimensional space that best pre-
serves the local configuration of each point with respect to its nearest neighbors,
so it could be expected that the use of this technique would be useful for a nearest
neighbor classification. We also evaluate a simple supervised version of the algo-
rithm,10 which improves the results considerably.

In Section 4 we will show some preprocessing and postprocessing steps to
improve the NN classification, reducing the noise present in the data samples and
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using a combination of classifiers. In Section 5 we will show the face database and
the gender recognition experiments performed. The final conclusions are shown
in the last section.

2. PREVIOUS WORKS IN GENDER RECOGNITION

Humans are able to distinguish the gender from faces’ images with high accu-
racy. In fact, some psychological studies11 have shown that we are able to achieve
accuracies close to 96%, using images where the additional information of the hair
has been eliminated. It would be interesting to find computational gender classifi-
ers that could reach similar ratios. Computational face recognition techniques have
been the subject of intensive research during the last few years; nevertheless few
algorithms have been proposed in the field of gender recognition. Here we will
highlight some of the most important ones.

Different approaches have been used in the literature, which can be divided
into two groups: geometry-based and appearance-based classification techniques.
In the first case, a set of features extracted from each image is used to train a
classifier, for example, some kind of distance (between eyes, eyebrows, etc.), or
size (face, mouthm and nose size, etc.). Brunelli and Poggio12 used a set of 16
geometric features per image to train two hyper basis function networks, and
achieved accuracies of 79% in a database composed of 168 training images. In
another work by Burton et al.,11 discriminant analysis was used over a set of 73
features (such as distances between key points, ratios and angles formed by the
key points, etc.), achieving an 85% accuracy.

On the other hand, in the appearance-based models the classifier is trained
using the whole image instead of using some geometric extracted features. In an
experiment performed in Burton et al.,13 human subjects were asked to identify
the gender of a set of pictures of faces and a set of three-dimensional (3-D)
laser-scanned representations of the same faces. The results showed that it was
more difficult to discriminate between classes in the 3-D images, which suggests
that features like global skin texture are very important in the gender recognition
process. In a similar way another experiment was performed using face pictures
and inverted pictures.14 The accuracy in the inverted pictures decreased signifi-
cantly. Perhaps the most representative appearance-based method is the eigen-
face approach. Abdi et al.15 trained a perceptron classifier using PCA-based features
of the input images, achieving a performance of the 91.8%.

Cottrell16 used a two-layer neural network approach, where each face image
was compressed in the first layer of the network and classified in the second layer.
They obtained an accuracy of 63% using only 64 training images. In a similar
work by Golomb et al.17 a system named SEXNET was used with a 91.9% accu-
racy. They used a neural network with 40 units to encode (compress) the 900-
dimensional face image, and then they used two layers of 40 hidden units to classify
the encodings. Tamura et al.18 also used a neural network to identify sex, achiev-
ing accuracies close to 90% even using reduced 8 � 8 central face images.

Gutta et al.19 proposed a hybrid approach using radial basis function (RBF)
networks and inductive decision trees achieving an accuracy of 96%. Moghaddam
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and Yang2 obtained the best performance, achieving 96.6% using a large face data-
base (1755 faces), using SVM with RBF kernels.

3. DISCRIMINANT ANALYSIS

The most simple classification rule is the one implemented by the NN classi-
fier. As we use the NN classification rule, a proper feature extraction algorithm
can simplify the classification step, and Discriminant Analysis can be very useful
for this task. In this section we will introduce classic Fisher Discriminant Analy-
sis, to show later how its nonparametric extension can solve the main drawbacks
of FLD: Gaussian distribution assumption and reduced dimensionality of the gen-
erated subspaces. We will also show our modification of classic nonparametric
discriminant analysis (NDA),8 which is expected to improve the NN classification.

3.1. Fisher Discriminant Analysis

The goal of discriminant analysis is to find the features that best separate the
different classes. One of the most used criterions J to reach it is to maximize

J � tr~S ES I ! (1)

where the matrices S E and S I generally represent the scatter of sample vectors
between different classes and within a class, respectively. It has been shown (see
Refs. 20 and 21) that the M � D linear transform that satisfies

ZW � arg max
W TS IW�I

tr~W TS EW ! (2)

optimizes the separability measure J. This problem has an analytical solution based
on the eigenvectors of the scatter matrices. The algorithm presented in Table I

Table I. General algorithm for solving the discriminability optimization problem stated in
Equation (2).

1. Given X the matrix containing data samples placed as N D-dimensional columns, S I the within class
scatter matrix, and M maximum dimension of discriminant space.

2. Compute eigenvectors and eigenvalues for S I . Make F the matrix with the eigenvectors placed as
columns and L the diagonal matrix with only the nonzero eigenvalues in the diagonal. M I is the number
of nonzero eigenvalues.

3. Whiten the data with respect to S I , to obtain M I-dimensional whitened data,

Z � L�1/2FTX

4. Compute S E on the whitened data.
5. Compute eigenvectors and eigenvalues for S E and make C the matrix with the eigenvectors placed as

columns and sorted by decreasing eigenvalue value.
6. Preserve only the first M E � min$M I, M, rank~S E !% columns, CM � $c1, . . . ,cM E % (those corresponding

to the M E largest eigenvalues).
7. The resulting optimal transformation is ZW �CM

T L�1/2FT and the projected data, Y � ZWX �CM
T Z.
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obtains this solution.21 The most widely spread approach for defining the within-
and between-class scatter matrices is the one that makes use of only up to second
order statistics of the data. This was done in a classic paper by Fisher7 and the
technique is referred to as Fisher Discriminant Analysis (FLD). In FLD the within-
class scatter matrix is usually computed as a weighted sum of the class-conditional
sample covariance matrices. If equiprobable priors are assumed for classes Ck ,
k � 1, . . . , K then

S I �
1

K (k�1

K

Sk (3)

where Sk is the class-conditional covariance matrix, estimated from the sample
set. The between-class scatter matrix is defined as

S E �
1

K (k�1

K

~mk �m0 !~mk �m0 !
T (4)

where mk is the class-conditional sample mean and m0 is the unconditional (global)
sample mean.

Notice the rank of S E is K �1, so the number of extracted features is, at most,
one less than the number of classes. Also notice the parametric nature of the scat-
ter matrix. The solution provided by FLD is blind beyond second-order statistics.
So we cannot expect our method to accurately indicate which features should be
extracted to preserve any complex classification structure.

3.2. Nonparametric Discriminant Analysis

In Ref. 8, Fukunaga and Mantock present a nonparametric method for dis-
criminant analysis in an attempt to overcome the limitations present in FLD. In
NDA the between-class scatter S E is of a nonparametric nature. This scatter matrix
is generally full rank, thus loosening the bound on extracted feature dimensional-
ity. Also, the nonparametric structure of this matrix inherently leads to extracted
features that preserve relevant structures for classification. We briefly expose this
technique, extensively detailed in Ref. 21.

In NDA, the between-class scatter matrix is obtained from vectors locally
pointing to another class. This is done as follows. The extraclass nearest neighbor
for a sample x � Ck is defined as x E � $x ' � OCk /7x '� x7� 7z � x7, ∀z � OCk % . In
the same fashion we can define the set of intraclass nearest neighbors as x I �
$x ' � Lc /7x '� x7� 7z � x7, ∀z � Ck % .

From these neighbors, the extraclass differences are defined as DE � x � x E

and the intraclass differences as DI � x � x I . Notice that DE points locally to the
nearest class (or classes) that does not contain the sample. The nonparametric
between-class scatter matrix is defined as (assuming uniform priors)

S E �
1

N (n�1

N

~Dn
E !~Dn

E !T (5)

where Dn
E is the extraclass difference for sample xn .
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A parametric form is chosen for the within-class scatter matrix S I , defined as
in Equation 3. Figure 1 illustrates the differences between NDA and FLD in two
artificial data sets, one with Gaussian classes where results are similar, and one
where FLD assumptions are not met. For the second case, the bimodality of one of
the classes displaces the class mean, introducing errors in the estimate of the para-
metric version of S E . The nonparametric version is not affected by this situation.

We now make use of the introduced notation to examine the relationship
between NN and NDA. This results in a modification of the within-class covari-
ance matrix, which we also introduce.

Given a training sample x, the accuracy of the 1-NN rule can be directly com-
puted by examining the ratio 7DE 7/7DI 7. If this ratio is more than one, x will be
correctly classified. Given the M � D linear transform W, the projected distances
are defined as DW

E, I � WDE, I . Notice that this definition does not exactly agree with
the extra- and intraclass distances in projection space because, except for the ortho-
normal transformation case, we have no warranty on distance preservation. Equiv-
alence of both definitions is asymptotically true. By the above remarks it is expected
that optimization of the following objective function should improve or at least
not downgrade NN performance:

ZW � arg max
E $7DW

I 72 %�1
E $7DW

E 72 % (6)

This optimization problem can be interpreted as: Find the linear transform that
maximizes the distance between classes, preserving the expected distance among
the members of a single class. Considering that,

E $7DW72 % � E $~WD!T~WD!%� tr~W TDDTW ! (7)

where D can be DI or DE . Replacing Equation 7 in Equation 6 we have that this last
equation is a particular case of Equation 2. Additionally, the formulas for the within-
and between-class scatter matrices are directly extracted from this equation. In

Figure 1. First directions of NDA (solid line) and FLD (dashed line) projections, for two arti-
ficial data sets. Observe the results in the right-hand figure, where the FLD assumptions are not
met.
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this case, the between-class scatter matrix agrees with Equation 5, but the within-
class scatter matrix is now defined in a nonparametric fashion:

Sw �
1

N (n�1

N

Dn
I Dn

IT
(8)

Given that we have an optimization problem of the form given in Equation 2, the
algorithm presented in Table I can also be applied to the optimization of our pro-
posed objective function 6. In Figure 2 a graphical example of the intra-class nor-
malization is shown. Points of the same class are normalized according to the
distances between each point and its nearest neighbor.

4. LOCALLY LINEAR EMBEDDING

As has been shown, NDA can be seen as a dimensionality reduction tech-
nique that is optimal for the nearest neighbor classification rule. Recently, a new

Figure 2. (a) Original data from a toy data set. (b) The same data whitened using the covari-
ance matrix of classic FLD. (c) Whitened data using the nonparametric modification. The nor-
malization in the last case is performed taking into account the distribution of the intraclass
nearest neighbor distances.
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nonsupervised technique has been proposed that presents, in principle, the same
property: Local Linear Embedding (LLE).9 The goal of LLE is to find a mapping
from a high dimensional space to a low dimensional one too, but performed in a
nonlinear way. Sometimes the high dimensional data lie in a nonlinear manifold
that can be represented using less dimensions than the dimensionality of the orig-
inal points. To reach this objective, LLE takes into account the restriction that
neighborhood points in the high dimensional space must remain in the same neigh-
borhood in the low dimensional space, and placed in a similar relative spatial sit-
uation (it does not change the local structure of the nearest neighbors of each point).

Given N D-dimensional training images as input vectors xn to the LLE tech-
nique, a three-step algorithm detailed in Table II is performed to find the low dimen-
sional space. This low dimensional representation of the data preserves local
neighborhoods, ensuring that the nearest neighbor classification rule will not
degrade after this transformation. In Figure 3, we can see an example of a two-
dimensional embedding of face image.

4.1. Supervised LLE

As we are dealing with classification algorithms, an interesting approach is to
consider the class membership of the train vectors to achieve class separation.10

The main difference between LLE and SLLE is the first step of the algorithm, the
search of the nearest neighbors. Whereas LLE looks for the K nearest neighbors of

Figure 3. Two-dimensional reduction of faces using LLE. Original faces are plotted near each
reduced point. Triangles stand for female subjects and dots for male subjects. As can be observed
some characteristics such as global illumination, beard presence (on the top right corner), or
ethnicity are captured by LLE embedding.
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each point from the whole data set, SLLE only searches the K nearest neighbors
from the set of points belonging to the same class of each point. So the weights
computed in the second step encode the best way of reconstructing each point
from its nearest neighbors of the same class of the point. The rest of the algorithm
is identical to the exposed LLE.

4.2. Projections of the Test Vectors

As has been shown, the LLE algorithm is a globally nonlinear technique.
This property has some advantages when finding the underlying manifolds, but
there is an important drawback when a new point u is entered as a new input to the
system. An approximation of the mapping is necessary to avoid rerunning the algo-
rithm each time (solving the expensive eigenvector problem). Parametric (proba-
bilistic) and nonparametric models have been used to solve this problem (see Refs. 9
and 22). In Ref. 23 the use of a multilayer perceptron (MLP) neural network is
proposed to learn the projection, and then it is only necessary to run a forward step
in the MLP to find the coordinates of each new unseen input vector.

Another approach24 is to the find the k nearest neighbors of the new point u
using the points of the training set xn . Then compute the reconstructing weights
Wnk using this neighbors. And finally compute the coordinates of the point u in the
reduced space as

Table II. LLE algorithm.

1. First we compute the K nearest neighbors of each point.
2. Capture the local geometry of the input data, using a set of W coefficients per each point, corresponding

to the weights Wnk that best reconstruct the vector xn from its K nearest neighbors xnk
, minimizing the

error reconstruction equation:

«~W !� (
n�1

N

�xn � (
k�1

K

Wnk xnk�2

(9)

To find the vectors that minimize this equation, a least-squares problem must be solved. For more details
see Ref. 22.

3. In the last step the coordinates of each point in the low dimensional space d ' �� D are computed as the
vectors yn that best minimize the equation

u~ y!�(�yi �(Wnk ynk�2 (10)

The weights found during the previous stage are constant, and we want to find the low dimensional
outputs yn that best reconstruct each vector using the information of these weights, which capture the
local geometric properties of each point in the original space. A new sparse matrix M is created and
defined as

Mij � dij � Wij � Wji � (
k�1

K

Wki Wkj (11)

It can be proved that the output vectors yn are the d '�1 eigenvectors of the matrix M associated with the
lowest eigenvalues (see Refs. 9 and 22 for more details).
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y � (
j�1

k

Wj{yN~ j ! (12)

where yN~ j! are the points in the low dimensional space corresponding to the used
nearest neighbors of the point u in the high dimensional space. As can be seen in
Figures 4 and 5, the projections obtained still preserve some class separability,
especially when the supervised LLE algorithm is used. The confusion between
classes is directly correlated to the classification error in the nearest neighbor search
step of the algorithm.

5. IMAGE PREPROCESSING

To improve the performance of the LLE and NDA algorithms, we have ana-
lyzed the use of a preprocessing step in both algorithms. The NDA algorithm

Figure 4. (a) Example of an embedding of two-class 500 data samples using LLE (to a two-
dimensional space). (b) The projection of 500 new unseen data samples.
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tries to maximize the mean distances to the nearest neighbors of the extraclass
vectors while it minimizes the distances between vectors of the same class. This
criterion is very useful to discriminate and classify samples, but it can be seri-
ously affected by the noise present in the largest part of the natural images. To
solve this problem we have added an initial PCA dimensionality reduction step,
which filters the noise preserving the largest part of the data variance. Using the
first 300 principal components with the face data set, 98% of the variance is
preserved, and we have seen that any choice from 200 to 400 principal compo-
nents yields similar results after NDA reduction and NN classification. We real-
ized experimentally that this stage considerably improves the results of NDA, so
we have merged the NDA projection matrix with the PCA basis to construct the
final projection.

Figure 5. (a) Example of an embedding of two-class 500 data samples using supervised LLE
(to a two-dimensional space). (b) The projection of 500 new unseen data samples.
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6. GENDER RECOGNITION EXPERIMENT

We are facing a gender recognition problem, so we have tested our modifica-
tion of the NDA algorithm and the LLE nonlinear projection for this purpose. We
have also compared the results with other well-known classification algorithms.

In this experiment, we used a face database composed of samples of two dif-
ferent internet-available faces databases, the AR Face database25 and XM2VTS
database.26 As a preprocessing step, all images were aligned, manually selecting
the center pixel of each eye and translating and resizing the face image with respect
to eye distance. Once face images had both eyes in the same position, they were
cropped to a 40-by-32 thumbnail. Then a global mean-variance normalization was
performed. The final data set consisted of 3461 1280-dimensional vectors. As can
be seen in Figure 6 we tried to avoid the presence of hair information in the final
face database, which makes the problem more difficult to solve.2

The error rates shown in the results were estimated with fivefold cross vali-
dation. The 3461 data samples were divided into five sets, four of them used for
training and the other one used for testing (we repeated it for the five sets and
averaged the results). We have built the sets in a pseudorandom way, following
three basic restrictions:

(1) The same number of males and females should appear in each set.
(2) Faces from the same person cannot be present in more than one set, to avoid person

recognition instead of gender recognition.
(3) The number of faces of each database should be very similar for each group.

As can be seen in Table III, our modification of the NDA algorithm improves the
results of classic dimensionality reduction techniques, PCA and FLD. We can see
how FLD performs worse than nearest neighbor classification in the original space.
This happens due to the limitations of FLD when non-Gaussian data are used, and
due to the fact of dealing with a two-class problem, the resulting one-dimensional
projected space is not enough to separate both classes. The NDA algorithm over-
comes these drawbacks.

We have also tested a bagging procedure to improve the NDA results. Bag-
ging is a specific technique to improve the performance of a classifier by combin-
ing several instances of the classifier. Two different techniques can be useful for
this task, boosting27 and bagging.28 The goal of boosting is to combine a set of
weak classifiers to get a classifier with better performance. On the other hand,
bagging tries to improve the performance by bootstrapping the data samples in
different sets and combining the results of the classification using each set, with
some rule such as majority voting or simply averaging the results. The goal of
bagging is to avoid or reduce the influence of misleading examples, because they
can be isolated in a few sets, having low influence in the final voting results. In our
classification scheme it is difficult to use boosting, because the hypothesis of a
weak classifier assumed in boosting is not fulfilled. Bagging, on the other hand,
can be very useful in the NDA scheme (as we will show in the results). We have
broken the training set into subsets, and we have learned the NDA algorithm in
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Figure 6. Examples of face images used in the experiment before and after applying the mean-
variance normalization.

Table III. Gender recognition accuracies.

Algorithm Accuracy

NN 86.28
PCA 86.57
SVM 90.95
FLD 81.30
LLE 76.27
SLLE 87.12
NDA 90.56
Bagged NDA 91.76
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each one using low dimensionality (�10). Then we have used the NN rule to clas-
sify each projected sample, and we have combined the results using majority vot-
ing. The final result shows that bagging increases the performance of our scheme
a little bit. The use of bagging also has another important advantage, the lower
computational cost due to performing the dimensionality reduction using reduced
subsets and to lower dimensionality spaces.

The training set has been divided into 49 subsets and we have trained an
NDA reduction to a 16-dimensional space in each set. The final label assignation
is obtained by majority voting. This technique has achieved the best results in our
experiments, even slightly better than SVM. Another important advantage of the
NDA algorithm is that it is able to reach the best performance even in very reduced
spaces. As we can see in Figure 7, in a 20-dimensional space it reaches accuracies
close to 90%, with low computational cost.

On the other hand, we can see how LLE is a bad algorithm to use in gender
classification1 unless we use the supervised version of the technique. Initially we
thought that the preservation of the local configuration of each point would improve
the results of a nearest neighbor classifier, but the results are far from the other
analyzed techniques. As can be seen in Figure 3, LLE projection captures data
related to global illumination, ethnicity, gesture, and beard, but it does not allow
good gender discrimination with a nearest neighbor approach. We can also see in
the results how the supervised version of LLE achieves performances close to the
other analyzed techniques, especially in low dimensional subspaces.

Figure 7. Recognition rate as a function of final dimension.
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7. CONCLUSIONS

In this article we have compared different dimension reduction techniques
especially suited for the nearest neighbor classification approach when used in
gender recognition. In particular we have analyzed a modification of a nonpara-
metric discriminant analysis algorithm, which obtains the best accuracies in our
experiments. The results obtained show that the use of NDA allows the best clas-
sification rates even in low dimensional subspaces, which makes the algorithm
computationally efficient.

Another important consideration is the use of bagging to improve the results,
and even make the learning algorithm computationally more efficient due the fact
of working with reduced subsets of the training data.

We also show the performance of the LLE algorithm for the same purpose.
Initially, it could be thought that LLE could be the ideal representation for a near-
est neighbor approach due to its property of conserving the local geometry of neigh-
bor points. The results have shown that this technique achieves poor accuracies
unless we use its supervised version.
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