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Abstract. In this paper we present a method suitable to be used for hu-
man tracking as a temporal prior in a particle filtering framework such as
CONDENSATION [5]. This method is for predicting feasible human pos-
tures given a reduced set of previous postures and will drastically reduce
the number of particles needed to track a generic high-articulated object.
Given a sequence of preceding postures, this example-driven transition
model probabilistically matches the most likely postures from a database
of human actions. Each action of the database is defined within a PCA-
like space called UaSpace suitable to perform the probabilistic match
when searching for similar sequences. So different, but feasible postures
of the database become the new predicted poses.

1 Introduction

The analysis of motion in image sequences involving humans has become a great
interest area in computer vision because of the wide amount of promising applica-
tions it brings, i.e. automatic surveillance, sports performance analysis, advanced
interfaces, augmented reality and motion synthesis among others. This challeng-
ing domain is referred as Human Sequence Evaluation (HSE) in the framework
presented by Gonzàlez in [3], and provides a general scheme for producing useful
human motion descriptions from images suitable to be used for such applications.

The HSE framework divides the task of evaluating sequences of images involv-
ing human motion in several layers or modules, each one encapsulating different
domains of knowledge. Hence, the interpretation of human motion is treated as
a transformation process from level to level. We focus on the transformation
process between the 3D human body configurations from 2D image sequences.
This tracking and reconstruction task of articulated 3D human motion is a key
point of HSE and has become a wide research topic in the last years [8].

Among others, one critical issue is the high dimensionality and the non-
linearity of the articulated rigid objects to be tracked. For instance, if we consider
a 3D body model of 12 joints with 3 Degrees of Freedom (DOF) per joint,
it results in a model with 36 DOF, which means that our tracking algorithm
must estimate at least 36 parameters at each time step. So several optimization
techniques are usually applied.
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The remainder of this paper is organized as follows. Section 2 explains the
probabilistic framework used to face the tracking problem. Section 3 describes
the human action model employed in this work. Section 4 focuses on the problem
of the probabilistic search within the space of actions. Section 5 shows some
experimental results, and section 6 concludes this paper.

2 Probabilistic Tracking Framework

The objective of visual tracking is to estimate the parameters of our model φt at
time t given the sequence of images It up to that moment. In other words, we
need to compute the posterior probability density function (pdf) p(φt|It) over
the parameters φt of the model to be tracked at time t. Thus, using the Bayes’
rule, we formulate the computation of our model parameters over time as [2]:

p(φt|It) = k p(It|φt)
∫
p(φt|φt−1) p(φt−1|It−1) dt , (1)

where φt represents the pose of the human body at time t, It is the image
sequence up to time t, k is a normalizing factor, p(It|φt) is the likelihood of
observing the image It given the parametrization φt of our model at time t, and
finally p(φt|φt−1) is the temporal prior, or dynamic model in this work.

The recursive Bayesian filter provides the theoretical optimal solution. It
decomposes the problem in two differentiated steps, i.e. prediction and update.
On the prediction step, a dynamic model is used to derive the prior pdf at time
t from the already computed posterior pdf at time t-1. On the update step, the
likelihood function is used to compute the posterior pdf at time t.

Unfortunately, Eq.(1) relies on an integral which cannot be analytically calcu-
lated unless strong assumptions about Gaussianity and linearity on the involved
distributions are made. Instead, we can approximate the true posterior distri-
bution p(φt|It) by means of a particle filter [1, 5]. Particle filtering is based on
Monte Carlo Simulation, thus, our posterior distribution at time t is represented
by a set of samples or particles that in our case define a particular human body
posture. Each particle has its own probability of being propagated over time
depending on how likely is its corresponding body posture to be found on the
image It. If a particle is selected to be propagated at time t, a transition model
or dynamic model is used to predict the new location in the parameter space at
time t+1, i.e. the new particle at the following time step.

This Bayesian model-based tracking approach brings us a principled way
for considering multiple hypotheses about the human body posture, and allows
us to integrate prior knowledge about the non-linear human dynamics into the
tracking making it more robust and efficient.

Since the dimensionality of the parameters space is very large in 3D hu-
man motion tracking, a large number of particles may be needed to successfully
track our model parameters over time. However, the number of particles grow
exponentially with the model dimensionality [6]. To overcome this, we need an
appropriate dynamic model in order to reduce the number of particles needed
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to make the tracking task possible. This temporal prior should capture the be-
haviour of human motion accurate enough to predict only new feasible postures,
but generic enough to be able to track any actor and any human motion.

The aim of this work is to present a temporal prior derived from [7], which
is suitable to be used by the particle filter. Hence, the proposed model will
propagate the parameters of our human body model over time while reducing
the number of particles required to track a 3D human body model during a
performance. The goal is focused in generating only the most plausible body
postures within the performance of a particular action, rather than attempting
to randomly propagate the parameters of a generic, high-articulated object.

3 Human Action Modeling Using p-actions

Our method learns the implicit probabilistic model of 3D human motion by using
an example-based approach. Our dynamic model will use a database of learnt
actions in order to predict the most suitable future body poses given a reduced
set of the history of estimated poses. We perform a probabilistic search within a
PCA-like space, called UaSpace [3] , which is built from a training set of human
motions acquired with a commercial Motion Capture system.

In this work we use the human action model and the human action space
defined in [4], called p-action and aSpace respectively. We show how to employ
this action model to develop a dynamic model suitable to be used for human
posture prediction which focuses and restricts the search space to those postures
with highest likelihood values in factored sampling techniques.

An action will be represented as a sequence of postures, so a proper body
model is required, which is learnt from examples. The training data has been
acquired using a commercial Motion Capture system. A set of 19 reflective mark-
ers were placed on several characteristic points of the subject’s body. The body
model employed is composed of twelve rigid body parts (hip, torso, shoulder,
neck, two thighs, two legs, two arms and two forearms) and fifteen joints. These
joints are structured in a hierarchical manner, where the root is located at the
hip. We represent the human body by 37 parameters which describe the relative
elevation and orientation of each limb which are natural to be used for limb
movement description. See [3, 4] for further details.

As a result, the training data set for each action Ai is composed of ri se-
quences Ai = {H1,H2, ...,Hri}, each one corresponding to a cycle or a perfor-
mance of the action to be modeled.

Thus, we define the complete set of human postures for an action Ai as:

Ai = {x1, x2, ..., xfi}, (2)

where each xj of dimensionality n × 1 stands for the 37 values of the human
body model described previously and fi refers to the overall number of training
postures for this particular action Ai.

Then, we perform a Principal Component Analysis (PCA) on the training set
Ai, and compute its aSpace as defined in [4]. Afterwards, for each performance
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Hj, we consider its projections within the aSpace of the captured postures as
the control values for an interpolating curve gj(p), which is computed using
a standard cubic-spline interpolation algorithm. The parameter p refers to the
temporal variation of the posture, which is normalized for each performance,
that is, p ∈ [0, 1]. This process is repeated for each performance of the learning
set, and a mean manifold g(p) is obtained by interpolating between the means
of gj(p) for each index p.

After, a key-frame set K is found for each action by using the Mahalanobis
distance, and the final human action model is represented as a parametric man-
ifold f(p), called p-action, which is built by interpolation between those key-
frames.

For our purposes, we need a common space where all the p-actions can be
represented. We denote this space as the Universal aSpace or UaSpace, and is
defined in the same fashion as the single aSpace for each action, but using all
the postures from all the performances from all the actions of our database.
After applying PCA, the first bU = 15 eigenvectors are chosen to determine the
95% of the variance, and will constitute the basis of the space ΩU where all the
p-actions will be represented.

Finally, an action Ai is modeled within the UaSpace as:

ΓAi = (ΩU,KAi , fAi), (3)

where ΩU defines the eigenvectors and the eigenvalues of the UaSpace, and KAi ,
fAi correspond to the key-frames and the parametric manifold that defines the
p-action, respectively.

Closer points between different manifolds correspond to similar human pos-
tures of several actions. In fact, the distance between two points in the UaSpace
can be considered as a measure of similarity between human postures.

4 Probabilistic Dynamic Model

Multiple hypotheses can be generated by considering different dynamical models.
We consider the human action model ΓAi defined before as the basis for those
dynamical models which can help to generate new samples over time within
a probabilistic framework. As postures can be shared among different actions
(such as in sitting, squatting and tumbling, for example), we need a probabilistic
model which can deal with multiple hypotheses while predicting new postures.
Fortunately, the UaSpace provides the framework where multiple motion models
can be learnt and recognized.

The goal of a dynamic model is to predict new body postures φt+1 at time
t + 1 given the history of the observed motion Φt from time t − d to time t. In
our approach, the motion database used to build the dynamic model is derived
from all the p-actions represented within the UaSpace described in the previous
section. In order to obtain a set of body postures from each parametric manifold,
each cubic-spline fAi(p) is sampled at a constant rate considering that p ∈ [0, 1].
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We denote each projected human posture of dimension bU within the UaS-
pace as ψi, and Ψi = [ψT

i , ..., ψ
T
i−d]

T refers to the (d × bU )-dimensional vector
containing all the postures in the database from location i− d to location i, i.e.
the history of motion of the last d postures. In a similar fashion, let φt be the
estimated posture at time t in the tracking framework described in section 2,
and Φt = [φT

t , ..., φ
T
t−d]

T the estimated sequence from time t− d to time t.
To perform the probabilistic tracking using the particle filtering approach, our

final goal is to generate new particles at the prediction step, i.e. to draw samples
φs

t from the dynamic model p(φt|Φt−1). Following the approach described by
Sidenbladh in [7], we can rewrite this distribution as:

p(φt|Φt−1) = p(φt|Ψi−1)p(Ψi−1|Φt−1), (4)

where p(φt|Ψi−1) is defined as 1 if φt = ψi, or 0 otherwise.
Thus, sampling from the prior p(φt|Φt−1) corresponds to sampling from the

distribution p(Ψi−1|Φt−1).This can be seen as performing a probabilistic search
of the estimated motion Φt with a stored sequence Ψi from the database. Assum-
ing that sequences of estimated postures follow a Gaussian distribution around
matching sequences on the database, i.e.:

Ψi = Φt + η(∆d), (5)

the matching probability is given by

p(Ψi|Φt) = k e−
1
2 (Ψi−Φt)

T ∆−1
d

(Ψi−Φt), (6)

where k is a normalizing factor.
The covariance matrix ∆d is defined by calculating the covariance ∆ of all

the postures ψi from the database, and storing d copies of ∆ along the diagonal
of the d · bU × d · bU covariance matrix ∆d. By doing this, we give the same
importance to each posture when matching the sequences, see [7] for details.

Thus, the dynamic model will estimate feasible human postures for tracking
by searching only for the most likely stored postures from the database, and
adding an empirically determined Gaussian noise term to them. Since this is a
probabilistic model, we can generate n new different particles φs

t at each time
step by sampling n times from the distribution p(φt|Φt−1) defined using the
learnt p-actions from the database.

5 Experimental Results

The dynamic model has been trained with 9 different basic actions (aRun, aWalk,
aBend, aSit, aJump, aSkip, aSquat, aTumble and aKick) considering near 100
postures for each action, by sampling the parametric manifolds fAi(p) that rep-
resent each action Ai at a constant rate with a sampling step of 0.01, p ∈ [0, 1].

The testing set consisted in 5 performances per action, each one performed
by 9 different actors. This results in 45 performances of all the actions which
were not included in the training set for the calculation of the p-actions.
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Table 1. Confusion Matrix in percentages.

Action aRun aWalk aBend aSit aJump aSkip aSquat aTumble aKick

aRun 97 0 0 0 0 0 0 0 3
aWalk 0 72 0 1 1 23 1 1 1
aBend 0 9 83 2 3 0 1 1 1
aSit 0 21 3 65 0 4 4 3 0
aJump 8 3 0 1 70 7 1 1 8
aSkip 0 10 0 0 0 85 0 0 5
aSquat 5 0 4 0 1 0 90 0 0
aTumble 0 0 0 2 2 0 0 95 1
aKick 1 11 1 2 13 21 2 1 48

In order to explore the coverage of the search space performed by our dynamic
model, we generated all the possible motion histories of length d (d = 10) for each
test performance, and sampled 100 new postures or particles per each motion
history following the procedure described above. After doing this for all the test
performances, the confusion matrix shown in Table 1 was generated, where each
row indicates the class, or p-action of the tested subsequence, and each column
corresponds to the class of the sampled particle using a minimum Mahalanobis
distance criteria.

This table shows that our predictions are not too focused on an specific
action, but still cover the truly performed action well enough. These results
reflect the fact that some actions share a lot of similar postures between each
other, especially at the beginning and at the end of the performances. This
situation is very well handled by our dynamic model, since it is able to throw
multiple hypotheses when the given subsequence is very similar in several actions,
so we do not restrict the searching space to any of them. These hypotheses
will be propagated over time by the particle filter until some of them become
very unlikely over time. For instance, looking at Table 1, we observe that the
action of aWalk has a lot of similarities with the action of aSkip. In the a
aSkip action a subject starts walking, and after some frames it passes over some
obstacle.Thus, the two actions share a lot of postures, especially at the beginning
and at the end. Therefore, multiple hypotheses on what is the agent doing must
be thrown on that situations, which is fulfilled by our dynamic model. We can
find a similar situation between the aBend and the aWalk actions, and between
the aJump, aRun and aKick. The table also shows that most of the actions only
share a few postures, or none at all. So, this result is useful for establishing
relationships between the involved actions. Further study needs to be done in
order to determine similarities between parts of the same action, and not the
action as a whole, in order to analyse the predictions made by the dynamic
model.

In Fig 1.(a) the first 3 dimensions of the UaSpace are drawn together with
a aBend test performance (dashed line). We have generated particles up to
the middle of the performance by our dynamic model and plotted them on
the UaSpace as single dots. We can observe that the predictions made at the
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(a) (b)

Fig. 1. Sampling from the dynamic model within the UaSpace. See text for details.

(a) (b)

Fig. 2. Predicted human postures for the aBend and aSit actions. See text for details.

beginning of the action are split mainly between the bending and other actions
such as aWalk, aJump and aSit. But, as the performance goes over time, almost
all the predictions are concentrated along the bending p-action, since it becomes
very different to the other actions. A similar situation for a aSit test performance
is shown in Fig.1(b).

In Fig 2.(a) and 2.(b) we show the true posture on the right and a set of
predicted postures on the left for a particular frame of the same aBend and aSit
performances used in Fig 1. The set shown is randomly selected from the 100
predicted postures. The results obtained point out that this dynamic model is
focused on generating the most suitable postures while performing an action,
and naturally reduces the searching space avoiding the evaluation of improbable
and impossible body configurations.
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6 Conclusions and Future Work

This paper presents a temporal prior distribution suitable to be used as a dy-
namic human body model for tracking. The drawn particles from this distri-
bution correspond to predicted feasible poses of the body given the history of
estimated poses over time. The method learns a human motion model from a
database of 3D actions acquired with a commercial Motion Capture System.

The results point out that this procedure, if used in a particle filtering frame-
work, will drastically reduce the number of particles needed to track a human
body while performing an action. Even though the proposed example-based dy-
namic model is less flexible than generic models for articulated objects motion,
it is generic and accurate enough for making the tracking of human motion an
achievable task.

Future research relies on integrating this approach into a particle filtering
framework and developing appropriate likelihood measures for human bodies in
2D images. To reduce the problems of extrapolating from the p-action model,
a more refined action model could be developed by probabilistically modeling
each action using Mixtures of Gaussians, for example. Furthermore, transitions
between actions could be naturally modelled by interpolating between the key-
frames of several p-actions. Another open issue is the high computational cost
of the probabilistic search, which could be addressed by efficient indexing the
motion database.
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3. Jordi Gonzàlez. Human Sequence Evaluation: the Key-frame Approach. PhD thesis,
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