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Abstract - This paper presents an improvement over a pre-
vious contour closure algorithm. Assuming that edge points
are given as input, the proposed approach consists of two
steps. Similarly than the previous approach, the minimum
spanning tree of a partially connected graph is initially com-
puted. Then, a morphological filter removes noisy links and
finally open contours are closed by minimizing a linking cost
function. Advantages of the proposed technique lie in the
lack of user defined thresholds and non-dependency of edge
point density. Experimental results with synthetic and real
range images are presented showing encouraging results
with uniform and non-uniform edge points’ distribution.

Index Terms - Contour Closure. Range Image
Segmentation.

I.   INTRODUCTION

Human being can easily extract objects’ contours after
watching their defining set of points. Unfortunately, this
simple and almost trivial action for the human being is a
quite difficult task to be automatically performed. A lot of
work has been carried out in the computer vision commu-
nity, some of them using the psychology as an inspiration
source. Human visual system can detect many patterns of
image elements; the ability to extract significant image
relations without any knowledge of the image content and
group them to obtain meaningful higher-level structure is
usually referred as perceptual grouping. Research in per-
ceptual grouping was started in 1920’s by Gestalt
psychologists. The hierarchical grouping principles, pro-
posed by Gestalt psychologists, embodied such concepts
as grouping by proximity, similarity, continuation, clo-
sure, and symmetry [1].

Several techniques have been developed in the range
image literature to compute closed contours. Classically,
they were inspired from the 2D image processing field;
hence, some of the proposed 3D contour closure
approaches have been based on the use of morphological
operators (e.g., [2], [3], [4]). Other approaches try to link
edge points according to local measures of continuity and
smoothness, with no a priori information about the object
shape. These techniques include several well-know algo-
rithms from different fields (deformable models,

constrained clustering and data ordering), see [5] for fur-
ther details. Differently than these approaches, in [6] a
graph-based technique has been proposed. Although
interesting experimental results were presented, the major
problems of that technique were user defined thresholds
and constrains on the density of edge points—they should
be uniformly sampled. In this new version, both draw-
backs have been finally solved giving rise to a fully
unsupervised technique.

Graph theory has long been used in the 2D image seg-
mentation problem (e.g., [5], [7], [8], [9], [10], [11]). Our
proposed approach differs from them not only due to the
fact that it is focused on range image processing but also
in the following aspects. Firstly, some of those techniques
were meant for partitioning a gray-level image into con-
nected homogeneous regions—region-based approaches
([7], [8], [9])—; for example, [7] introduces a 2D image
segmentation algorithm using minimum spanning trees.
By minimizing the sum of gray levels variations a mini-
mum spanning tree is partitioned into subtrees,
representing different homogeneous regions. Similarly,
[8] proposes a graph-partitioning with non-parametric
clustering approach for 2D image segmentation. Sec-
ondly, those approaches, proposed to extract closed
contours, were intended to compute the external object
boundary ([5], [10]), but not closed boundaries of the
object’s regions. [5] presents a clustering algorithm based
on the minimization of a cost function that depends on
several well-known techniques: snakes, Kohonen maps,
elastic nets, and hard and fuzzy c-means. Differently than
the previous proposal, [10] presents an object contour
closure technique by finding the eigenvector with the
largest positive real eigenvalue of a transition matrix for a
Markov process where edges from the image serve as
states. That work incorporates the Gestalt principles of
proximity and good continuity. Additionally this
approach is able to handle scenes containing several
objects. Finally, the use of graph-based representations
has been discussed on [11]. The authors introduce a full
graph-based active vision system able to solve such tasks
as: image segmentation, image perceptual grouping and
object recognition (face and 3D object recognition). The
system is used to drive an autonomous mobile robot. Seg-
mentation problem has been solved by using a graph
partition greedy algorithm with superlinear time
complexity. 

Up to our knowledge, [6] was the first approach to
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tackle range image contour extraction problem by means
of a graph-based strategy. In the current work improve-
ments over that first work are introduced looking for an
unsupervised contour closure technique. The proposed
algorithm is described in Section 2. Section 3 presents
experimental results by using synthetic and real range
images. Conclusions are finally given in Section 4.

II.   CONTOUR CLOSURE ALGORITHM

Closed contour extraction is a common problem within
the edge-based segmentation approaches. Although, sev-
eral techniques have been proposed, they are focussed on
solutions for their specific problems. For example, [12]
presents an edge linking algorithm to close a one pixel
gap in any one of the four directions.

Some other works tackle the contour extraction prob-
lem by analyzing the enclosed surfaces [4], [13];
therefore, contour and region are simultaneously
extracted. [2] brought forward an adaptive approach that
extracts closed contour by applying a process of hypothe-
ses generation and verification. This algorithm is based on
the consideration that any contour gap can be closed by
dilating the input edge map. Thus, a single dilation opera-
tion followed by region verification is applied until all
regions are labeled. The problem is that, as the dilation is
performed in all directions, thin regions are liable to dis-
appear, due to the fusion of the contours enclosing them.
An extension of the previous approach is presented in [3].
There, the geometry of contours is taken into account in
order to apply the dilation—the dilation process is
restricted to one direction. Advantages and disadvantages
of the aforementioned techniques are presented in [6].

The proposed technique is carried out with no a priori
information about the object’s surface shape. It takes the
contour closure problem as a graph partitioning one and
present improvements over the first version [6]. Assuming
that a range image, together with its corresponding edge
point information are given as inputs, the proposed tech-
nique consists of two stages. Firstly, the minimum
spanning tree (MST) of a partially connected graph is
computed. Finally, a post-processing technique, based on
a filtering technique plus a cost function minimization,
generates a single path describing the object’s contours.
These stages are described below.

A. Graph Generation and MST
Let R(r, c) be a range image with R rows and C col-

umns, where each array element (r, c) (  and
) is a scalar that represents a surface point of

coordinates , referred to a local coordinate system
associated with the range sensor. Additionally, the corre-
sponding edge points’ information is given as a binary
array B(r, c)—edge points are labeled with a 1, while non-
edge points with a 0. These points are supposed to be pre-
viously computed by some edge-based range image
segmentation algorithm (see illustration in Fig. 1(right)). 

The aim at this stage is to find the best connectivity
between edge points. A simple and easy approach could
be to start with a fully connected graph; however, in order
to speed up further processing a partially connected graph
is chosen. Having in mind that the partially connected

graph should connects edges linking every couple of near-
est neighbors, a 2D Delaunay triangulation algorithm has
been finally adopted.

Let P = {Bi = (ri, ci) | i = 1, ..., n} be a set of edge
points in the binary array B(r, c), its 2D triangular mesh is
a piecewise linear partition consisting of triangles con-
nected along their edges. Formally, a 2D triangular mesh
M is a set , where , , is
a set of vertex and E is a description of the mesh topology,

. The triangular mesh
M is a Delaunay triangulation of P if and only if the cir-
cumcircle of any triangle of M does not contain a point of
P in its interior [14]. In other words, the Delaunay trian-
gulation of the input edge points P will connect every
point with its nearest, as we were looking for.

In order to obtain the shortest—cheapest—path linking
all the edge points, that triangular mesh is now considered
as a partially connected weighted planar graph G =

; every edge is associated with a cost value com-
puted as the 3D distance between the range image points
linked by that edge:

 

The MST of G is the acyclic subgraph of G that con-
tains all the nodes and such that the sum of the costs
associated with its edges is minimum. The MST of a
graph G, defined by m edges and n vertices can be effi-
ciently computed in O(mlogn) by applying Kruskal’s
algorithm [15]. In the current implementation, due to the
fact that G is a 2D Delaunay triangulation of the n input
edge points, but not a fully connected graph, the cost can
be bounded by O (nlogn), assuming that the average num-
ber of edges is proportional to the density of points [16].
Notice that the MST of the Delaunay triangulated input
data points gives the same result than if it were computed
over a fully connected graph of those input data points.

Fig. 2,(top-right) shows the MST corresponding to the
triangular mesh (Fig. 2(top-left)) computed from the edge
points presented in Fig. 1(right); enlargements are pre-
sented in Fig. 2(bottom). As expected, the generated tree
goes along edge points unveiling regions’ contours. In
addition, the algorithm generates several short branches
which are removed during the following stage. Finally, as
mentioned above, the MST is the acyclic subgraph of G so
no closed boundaries will appear at this stage. These open
contours are easily detected and connected during the next
stage.
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Fig. 1. (left) Input range image (640x480). (right) Input binary array of 
edge points corresponding to the given range image (11,075 points).

P E,{ } P B1 … Bn, ,{ }= Bi R2∈

E Bi Bj,( ) i j, 1 … n i; j≠, ,={ }=

P Ew,{ }

Ew Bi Bj wi j,, ,( ) wi j,( d= ist R ri ci,( ) R rj cj,( ),( ) )
i(

∧
j, 1 … n i j )≠, , ,=

{
}

=

4345



B. MST Filtering and Contour Closure

The resulting MST can be understood as a single
polyline liking all the input points (differently than [6]
where several polylines were computed). As mentioned
above, several short branches, connected with the main
path, were generated from the MST. They belong to infor-
mation redundancy and noisy data, mainly in jump edge
regions. The aims at this stage are two; firstly, to remove
those short branches (see enlargement shown in Fig.
2(bottom-right)) and secondly to close open contours.

In order to perform the removal process, and by using
mathematical morphology concepts, a kind of opening
algorithm has been used. This algorithm consists in per-
forming an iterative erosion process followed by a
dilation stage applied as many times as the erosion
requires. The opening algorithm assumes segments of the
polyline—i.e. edges from the graph—as basic processing
elements (like pixels in an intensity image). Those seg-
ments linked from only one of their defining points—so
called end segments—are removed during the erosion
stage. This stage is applied t times; at each iteration all the
end segments of that configuration are removed. The
number of iterations depends on the input binary edge
map; this is one of the differences with the previous ver-
sion ([6]), where t was a fixed value (ten iterations). In the
current implementation t was automatically defined
according to the difference between removed elements at
each iteration:  (  represents the
elements removed in the iteration t). The erosion process
ended when that difference ( ) is null in at least  con-
secutive iterations,  was set to four in the current
implementation. Although in the current version we have
to define the threshold value , we consider that it is more
appropriate than define before hand the number of itera-
tions [6]. We could assume that after  consecutive
iterations without changes in the number of removed
edges, the erosion process has finished removing short
branches and has arrived to a stability point where edges
belonging to the main path are being processed. After

ending the erosion process, t dilations are performed.

Dilations are carried out over end segments left by the
erosion process. It consists in putting back the segment
connected with each one of the end segments present at
that iteration. The number of dilations is the same than the
number of erosions. Thus, in order to perform the dilation
process, it is necessary to store previous stages of those
end segments left by the erosion process at each iteration.
Removed points that are not recovered during the dilation
process are also removed from the binary array B(r, c).
Fig. 3(top) shows an illustration of the proposed opening
algorithm while Fig. 3(bottom) illustrates the data struc-
ture used during the erosion and dilation stages.
Experimental results with the MST presented in Fig.
2(top-right) are presented in Fig. 4(left). An enlargement

Fig. 2. (top-left) 2D triangular mesh of the binary edge map (20,387 
triangles). (top-right) Resulting MST (11,074 edges). (bottom-left) 

Enlargement of a 2D triangular mesh section. (bottom-right) Enlargement 
of the MST corresponding to the same region.
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Fig. 3. (top) Illustration of the opening algorithm. (bottom) Removal 
information used during the dilation process.
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of the resulting contours, obtained after the opening stage,
is given in Fig. 4(right).

Finally, after removing short branches, the last stage of
the algorithm focuses on detecting and closing open con-
tours. Open contours were originated by construction, due
to the fact that a MST is an acyclic subgraph so that it will
not contain any closed contours. First of all, edge points
only connected once are detected—they are easily identi-
fied from end segments left by the opening algorithm. For
each one of those end points a list of candidate points is
extracted from the binary array B(r, c). Finally, the point
with a minimum linking cost is chosen to close that open
boundary. These stages are further detailed below.

Given an end point , defining an end segment,
the set of candidate points to be linked with  are
selected by means of an iterative process over a dynamic
window centered at that point. Initially, all those edge
points, from the binary array, contained in the window

 are chosen as candidates:
( ,

,  and
); during the first iteration s is

set to zero, then after each iteration s is increased by a
user defined value ; threshold  depends on the density
of edge points in the binary array, in the current imple-
mentation  was set to four.

After extracting the set of candidate points a linking
cost, representing the cost of connecting each one of those
candidates with the given end point , is computed
according to the following expression: 

(1)

 represents the 3D distance between the corre-
sponding range image points (R(i,j), R(u,v)) while

 measure the length of the path—number of
edges—linking those two points. In case of no candidate
points were extracted from the current window or the
PathLength values from those candidates to the given end
point were equal or smaller than t, the size of the dynamic
window is increased by ; so that s and t, and the process
starts again by extracting a new set of candidate points.
The new set of candidate points does not contain those
previously studied due to the fact that the new window is
only defined by the outside band. Otherwise, the point
with lowest linking cost is chosen to be linked with the
point .

The philosophy of the proposed cost function is to link
an end point with its nearest point in the 3D space, avoid-
ing those points already connected in its neighborhood.
Fig. 5 presents the final result after closing all open
boundaries, by linking end points with their correspond-
ing minimum linking cost points. Notice how the big gap
presented in Fig. 4(right) has been correctly closed. This
kind of gap could not be closed with an approach such as
the one proposed by [6] where a uniform distribution of
edge points is assumed.

III.   EXPERIMENTAL RESULTS

Closed contour extraction is a task highly dependent on
the detected edge points. Therefore, in order to test the
proposed approach, independently of the given edge
points, three different test methodologies have been pro-
posed. Firstly, experimental result from a synthetic scene,
containing a single object, will be presented. This syn-
thetic range image together with its corresponding edge
points (uniformly sampled through the object’s edges) are
considered as inputs to the system. Secondly, experimen-
tal results by using the same synthetic scene mentioned
above but now adding noisy data points are presented.
Finally, the proposed approach is applied to real range
images, this last test include several real range images
from Vision lab data base at the University of South Flor-
ida (K2T structured light sensor). Edge points were
computed by means of two edge-based range image seg-
mentation techniques ([2] and [6]), in addition by using
different approximation errors—approximation error
defines the density of edge points.

A. Synthetic Data Points
A synthetic range image defined by 480x640 points has

been used. From this synthetic range image, uniformly
distributed edge points were computed according to the
surface orientation discontinuities. Fig. 6 shows results
from different algorithm’s steps. Fig. 6(left) displays the
triangular mesh generated by means of the 2D Delaunay
triangulation algorithm. Fig. 6(middle) presents the com-
puted tree, together with a sketch of the tree’s branches.
Finally, during the postprocessing stage, open contours
(A, B and C on the illustration) were closed by using the
proposed closing approach (minimum linking cost). In
this particular example there are not short branches to be
removed—noisy data or redundant information—hence
the opening morphological operator only consists of the

Fig. 4. (left) MST filtered by the opening process (9,352 edges). (right) 
Enlargement of the same region presented in Fig. 2(bottom).
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Fig. 5. (left) Final contour after the closure stage—minimum linking 
cost—(9,426 edges). (right) Enlargement showing that the large gap 

presented in previous figures has also been closed.
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first five iterations (five erosions and five dilations).

B. Synthetic Data Points Plus Noisy Data
The aim at this stage is to test the proposed technique

in presence of noise. Noisy data were randomly intro-
duced in the binary array (edge points); the corresponding
3D values were extracted from the range image. Addition-
ally some edge points are removed assuming they are not
correctly extracted by the segmentation algorithm. Differ-
ent synthetic range images have been considered, Fig. 7
presents results obtained after adding noisy data points,
and removing some edge points, to the synthetic range
image presented in Fig. 6. Fig. 7(top) contains 6.5% of
wrong edge points (noisy data plus removed), while Fig.
7(bottom) contains 9.4% of wrong edge points. Noisy data
points generate short branches (Fig. 7(middle)) that are
removed during the opening stage. Fig. 7(right) presents
final results after filtering MST and closing open bound-
aries. Some of those open boundaries (see enlargement in
Fig. 7(top-middle)) can not be closed by those techniques
only based on dilation process [6].

C. Real Range Images
Finally the proposed approach has been tested with

several real range images obtained with the K2T struc-
tured light sensor—from the Vision lab data base at the
University of South Florida (http://marathon.csee.usf.edu/
range/DataBase.html). Edge points were computed by
using the code presented in [2] and [6]; the difference
between them is that in [2], not only rows and columns
are considered but also diagonals. Edge points were com-
puted at different approximation errors. The range image
used through the paper, to illustrate the different stages of
the proposed technique, consists of 480x640 points. Fig.
1(right) shows input edge points (11,075 points), while
the corresponding triangular mesh and MST are presented
in Fig. 2. The triangular mesh contains 20,387 triangles,
while its MST is defined by 11,074 edges. Notice as the
MST produces a gap in the middle of the image (enlarge-
ment area) due to the fact of the low density. This gap is
closed during the last stage, just after removing noisy

points. Again, techniques based on edge dilation are not
able to close gaps so big like that. After removing short
branches, by means of the proposed opening algorithm,
those couples with minimum linking cost are connected.
This final result is presented in Fig. 5 and it consists of
9,426 edges.

Fig. 8 presents three experimental results obtained
after processing a range image defined by 480x640 points.
Input edge points (computed at different approximation
errors) are presented in Fig. 8(left), while the computed
closed contours are shown in Fig. 8(right). Finally, Fig. 9
presents a range image defined by 480x640 points (top-
left); its corresponding intensity image is presented in Fig.
9(top-right) as an illustration. Input edge point representa-
tions, computed at different approximation errors are
presented in Fig. 9(middle-left) and Fig. 9(bottom-left).
They were only computed with the code presented in [2],
while in the previous examples both codes were used
alternatively ([2] and [6]). Final results are showed in Fig.
9(middle-right) and Fig. 9(bottom-right).

IV.   CONCLUSIONS

This paper presents improvements over a previous
graph-based approach to deal with the classical contour
closure problem. This problem can be understood as the
last stage of edge-based range image segmentation tech-
niques. The proposed technique only require the

Fig. 6. Different steps of the proposed algorithm when a scene containing 
a single object (synthetically generated) is processed. (left) 2D triangular 
mesh (843 triangles). (middle) MST of the previous triangular mesh (597 

edges). (right) Final result (600 edges).
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Fig. 7. The scene presented in Fig. 6 after adding noisy data points and 
removing some edge points. (left) Triangular meshes of the input data 
points. (middle) Resulting MST, short branches are generated by noisy 

data points (enlargements show open boundaries). (right) Final result after 
filtering noisy data points and closing open boundaries.
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information about edge point positions, no other assump-
tions neither about the enclosed surfaces nor about the
uniform edge points distribution have to be made. Assum-

ing a range image with its corresponding edge points are
given as inputs, the proposed technique consists of two
stages. Firstly, the MST of a partially connected graph is
computed. Next, after unveiling objects’ contours a post-
processing stage removes short branches and finally open
boundaries are efficiently closed by minimizing a linking
cost function.
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Fig. 8. (left) Input edge points computed at different approximation 
errors. (right) Final results computed by the proposed technique

8,771 points 7,526 edges

9,480 points 8,114 edges

9,449 points 3,997 edges

Fig. 9. (top) Original range image (480x640 points) with the 
corresponding intensity image. (middle-left) Input edge points (9.481 
points). (middle-right) Closed boundaries extracted with the proposed 
technique (6,194 edges). (bottom-left) Input edge points (8.941 points). 

(bottom-right) Final result (6,082 edges).

4349


	MAIN MENU

