
Improving the Table Boundary Detection in PDFs by Fixing the Sequence Error
of the Sparse Lines

Ying Liu, Kun Bai, Prasenjit Mitra, C. Lee Giles
College of Information Sciences and Technology

The Penn State University, University Park, PA, 16803
{yliu, kbai, pmitra, giles}@ist.psu.edu

Abstract

As the rapid growth of PDF documents, recognizing the
document structure and components are useful for docu-
ment storage, classification and retrieval. Table, a ubiqui-
tous document component, becomes an important informa-
tion source. Accurately detecting the table boundary plays
a crucial role for many applications, e.g., the increasing
demand on the table data search. Rather than converting
PDFs to image or HTML and then processing with other
techniques (e.g., OCR), extracting and analyzing texts from
PDFs directly is easy and accurate. However, text extrac-
tion tools face a common problem: text sequence error. In
this paper, we propose two algorithms to recover the se-
quence of extracted sparse lines, which improve the table
content collection. The experimental results show the com-
parison of the performance of both algorithms, and demon-
strate the effectiveness of text sequence recovering for the
table boundary detection.

1. Introduction
Portable document format (PDF) is a widely used docu-

ment format. Although many researchers analyze PDF doc-
uments by converting them to other formats (e.g., image,
html), automatically identifying the PDF document logical
structures information and document components (e.g., fig-
ures, tables, etc) are still challenging problems [2] because
of three main reasons: 1) extracted texts from PDF files are
non-tagged; 2) wrong text sequences are generated by the
text extraction tools; 3) new noises are caused by necessary
tools (e.g., OCR) when converting the PDFs into other for-
mat (e.g., image).

Tables, as a specific document component, are ubiqui-
tous everywhere. To thoroughly analyzing the table con-
tent, locating the table boundary in a document is the first
and crucial step for consequent applications (e.g., the table
search). Because most of the tables in scientific documents
are text-based tables, solely analyzing the text objects in

a PDF file can achieve good performance in terms of sav-
ing efforts on other objects. However, existing text extrac-
tion tools face a common problem: the extracted text pieces
follow a different sequence from its original appearance in
PDF files. Although the wrong sequence does not affect
the PDF documents displaying for browsing purpose, it can
severely interfere the document content analyzing works
that rely on the information of the relative location and se-
quence among the text pieces. Table boundary detection is
a typical example. In order to improve the accuracy of the
table boundary detection, we need to recover the extracted
text sequences to the orders that comply with the human’s
reading habit. The sequence errors can be classified into two
types: within-table errors and beyond-table errors. In this
paper, we propose two text sequence recovering algorithms
to fix them. Our algorithms start with the detected sparse
lines in each PDF page and detect the table boundaries by
analyzing the sparse areas and the caption information. The
detail of the sparse line detection is out of the scope of this
paper. If interested, the details can be found in [3] and [4].

The rest of the paper is organized as follows. Section 2
gives the definition for main terms used in this paper. Sec-
tion 3 elaborates two text sequence error categories. Section
4 introduces two text sequence recovering algorithms and
how to detect the table boundary based on the recovered se-
quences. Section 5 demonstrates the experimental results.
Conclusion and future work are included in section 6.

2 Term Definitions
Free online dictionary1 defines a table as an orderly ar-

rangement of data, especially one in which the data are ar-
ranged in columns and rows in an essentially rectangular
form. In addition, we add an additional restriction on the
definition of tables in scientific documents: each table has
a caption that starts with a keyword (e.g., “Table” or “TA-
BLE”). With this restriction, the tables can be understood
as genuine tables [6]. The table boundary includes all the

1http://www.thefreedictionary.com/table

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.138

1006

parts in the Wang’s model [5]. Both table caption and foot-
note are not included.

Different lines in the same page have different internal
space size, text density, and length. A document page con-
tains at least one column and many have two (e.g., ACM and
IEEE conference formats), or three even four columns. The
length of lines can be equal to, longer (e.g., cross-column
lines), or shorter (e.g., some headings) than the width of the
document column. Because single-column documents are
easy to process, in this paper, we focus on the most popular
yet challenging digital document template: double-column
formatting. From the internal space perspective, the major-
ity of the lines contain normal space size while some lines
have large space size, between two adjacent words. We de-
fine a line as a sparse line if it satisfies at least one of the
following conditions: 1) This line contains at least one large
space gap between a pair of consecutive words within the
line; 2) The length of this line is much shorter than a thresh-
old ll; Note, different definitions of “large” and the thresh-
old ll generate different results. Based on the observation
and the statistical results on thousands of table examples, in
this paper we set the “large” as the double of the average
space between words in document body content lines, and
ll as the two third of the document column width;

Non-sparse lines, which satisfy neither of the conditions,
usually occur in the following document components: long
document titles, the abstracts, the body content paragraphs,
etc. Sparse lines cover other specific document compo-
nents: tables, texts in figures, mathematical formulas, doc-
ument affiliations, and references, etc. Since the majority
lines in a document are non-sparse lines, filtering them out
as early as possible is an effective preprocessing step for the
table boundary detection because we can save a substantial
amount of time and effort and narrow down the table bound-
ary to the sparse lines easily. The detection and filtering
work is out the scope of this paper. If interested, the details
can be found in [3] [4]. Our text sequence recovering algo-
rithm starts with the detected sparse lines. Figure 1 shows
in a document page with a wide table while Figure 2 shows
the filtered sparse lines in another document page with two
parallel tables.

3 The text sequence problem
Given a PDF document page, the human reading se-

quence is usually top-down, left-to-right, and line by line,
column by column. Particularly, some document compo-
nents in the page may cross multiple document columns,
such as the document title, the affiliation, some wide ta-
bles and figures. Although the text extraction tools can ex-
tract all the text information from a PDF page, the sequence
of the exported texts may not reflect the human reading
ordering. The text sequence error is a common problem
shared by existing text extraction tools (e.g., PDF2TEXT,

Figure 1. A document page with a cross-
column table (left) and its sparse lines (right)

Figure 2. A document page with two parallel
tables (left) and its sparse lines (right)

PDFBOX, TET, PDFTextStream). Such text sequence error
happens frequently in the table contents, which may gener-
ates serious wrong results during the table detection, such as
segmenting a table into several pieces, wrong column/row
information, and omitting cells/whole tables etc. Some of
the errors can be fixed with complex post-processing while
others can not. According to the scope of the text sequence
errors, we category them into two classes: inside-table text
sequence error and beyond-table text sequence error.

Figure 3a provides an example of the inside-table text
sequence error. The text extraction tools export 33 sparse
lines in such a sequence: “Content (% m/m)”, “Proposed
method”, “Peak Peak”, “Sample Element height area”,
“Low melt Ag 43.9 44.1”, “0.5 2.4”, “Cu 15.6 15.2”, “2.7
1.8”, “Sample No.318+ Ag 25.7 25.2”, “Cu 34.4 33.7”,
“2.3 1.3”, “2.1 2.1”, “Reference”, “Flame value”, “AAS
(%m/m)”, “45.1 44.46”, “15.3 14-16”, “25.7 ≈25”, “34.8
≈35”, “1.1”, “2.5”, “1.4”, “2.5”. The sequence is: the
first four columns, then the last two columns. Moreover,
within the same column, the ordering of rows does not ex-
actly follow the top-down manner. In this type, the errors
happen only within the table boundary and no outside text
interrupts them. No matter how disordered the sequence is,
all the contents of a table come together as a whole.

In beyond-table text sequence error, the table lines are
partitioned into at least two parts by non-table lines. The
text extraction tools usually export a part of the table con-

1007

(a)

(b)

Figure 3. Two examples of the text sequence
errors

tent first, jump to another document area and process it, and
then come back to finish the rest of the table sections. Such
alternation happens at least once. Figure 3b shows an exam-
ple: the text extraction tools output the table caption first on
the second document column, then jump to the first docu-
ment column on the left and process some scattered texts in
the figures. After telling the figure caption, they come back
to the table area. Sometimes, the tools extract several table
columns then jump to other areas (e.g., the following regu-
lar document contents) to finish several lines or paragraphs,
then return to the table data again. With such beyond-table
text sequence errors, collecting all the table cells is a chal-
lenging task because it is difficult to predict how far the
distances are among different table parts.

In order to accurately collect the table cells from a page
and recover the sequence, resorting the texts in the page is
one approach. B. Yildiz et. al mentioned the similar idea
in [7] but without any detail about the methodology and the
performance. Other proposed approaches [1] exploit geo-
metric or typographic features of the page objects, and go
further in exploiting the content of object. X-Y cut approach
is a representing method. However, its performance is not
satisfying. Moreover, these proposed works need to process
both sparse lines and non-sparse lines. The more non-sparse
lines involve, the higher possibility errors incur.

4 Text sequence recovering algorithms
To fix the text sequence error problem, we propose two

methods to resort the detected sparse lines within a given
area. For the inside-table text sequence errors, the area is
the table itself. For the beyond-table text sequence errors,
the area is the whole page. Some pages have multiple doc-
ument columns, whether considering such information or
not may generate different results for different cases. In
this paper, we try both of them and analyze their advan-
tages/disadvantages.

4.1 Algorithm 1: Considering the docu-
ment column information

The recovering procedure includes two parts: the cross-
column resorting, and the within-column resorting. Here
the column refers to the document column instead of the
table column. How to get the document column informa-
tion is out of scope of this paper. We adopt an easy but
effective method by calculating the average length of the
non-sparse lines then comparing with the document width.
For the inside-table text sequence disordering, we only im-
plement the within-column resorting. For the beyond-table
text sequence disordering, we have to implement both re-
sortings.

In the cross-column resorting, SL denotes the set of all
the sparse lines in a document page: SL =

⋃m
i=1(li). For

a document column COk, its beginning and ending X-axes
values are Xcok

and X
′
cok

. Each column has a vector v to
store its sparse lines. Initially, the vector is empty. For each
sparse line, we compare its X-axis coordinates with doc-
ument columns and append it in the matched vector v, if
applicable. Some sparse lines may cross several document
columns. Such lines usually are lines in cross-column ta-
bles/figures or long document titles or affiliations, etc. We
record such lines in another vector vcc.

In the within-column resorting part, the inputs include
the filled vector V and Vcc. The output is a new vector
Vsorted, which stores all sorted sparse lines. For each doc-
ument column COk, we get all the Y-axis values from the
sparse lines in vector vk. Among these Y-axis values, we
identify all the non-duplicated values and sort them, and
store them in a new vector Vy . With these Y-axis values, we
sort all sparse lines in vector vk accordingly. This method
works well for the tables that are located within one doc-
ument column (e.g., the table in Figure 3b). However, for
the wide tables that cross more than one document column
(see Figure 1a), this algorithm may generate errors because
it is difficult to know which lines should cross the docu-
ment columns in advance. If there are overlaps between the
table column spaces and the document column spaces, this
method will segment a whole table into at least two parts.
Although some table lines may block the document column
space, it is difficult to identify the last line of the table.

1008

Algorithm 1: Sorting sparse lines across the document
columns

Input: All sparse lines SL = ∪m
i=1sli in a page

Input: the information of Document columns
CO = ∪p

k=1cok. The sparse lines that are
located in the column cok will be stored in the
corresponding vector vk

Input: a vector Vcc to store the cross-column sparse
lines. Vcc = ∅

begin1

foreach sli ∈ SL do2

xsli ← the starting X-axis of sli;3

x
′
sli
← the ending X-axis of sli;4

while the next document column cok exists do5

xcok
← the starting X-axis of cok;6

x
′
cok
← the ending X-axis of cok;7

if (xcok
� xsli < x

′
sli

� x
′
cok

) then8

vk = vk + sli;9

break;10

if sli fits no document column then11

vcc = vcc + sli;12

end13

4.2 Algorithm 2: Without considering the
document column information

To deal with the above special cases, we propose an-
other text sorting algorithm without considering the docu-
ment column information at the beginning. The algorithm
has four steps: 1) obtaining all the non-duplicated Y-axis
values of the sparse lines within an area; 2) sorting these
Y-axis values from the top to the bottom; 3) ordering all the
sparse lines in the area according to the sorted Y-axis val-
ues; 4) exporting the sparse lines in the area orderly. For
the inside-table text sequence error problem, the area is the
table itself. For the beyond-table text sequence error prob-
lem, this algorithm works better for the wide tables because
the area refers to the whole page. All the sparse lines of
cross-column tables will be exported out uninterruptedly.
The high-risk case of this algorithm is the parallel tables.
Parallel tables mean two tables that are located within two
adjacent document columns and both tables have overlap
Y-axis areas (see Figure 2a). Such cases happen very infre-
quently. In addition, they can be fixed easily by considering
the width and the location of table captions.

4.3 Detecting the Table Boundary based
on the sorted sparse lines

With the sorted sparse lines, we detect the table boundary
by combining the table caption information. We define a
keyword list, which lists all the possible starting keywords

Algorithm 2: Sorting sparse lines within a document
column

Input: V, Vcc, Vy, Vsorted

foreach vk ∈ COk do1

Vy ← all the Y-axis values in vk;2

Vy ← all the non-duplicated objects in Vy;3

Vy = Vy − Vcc;4

sorted(Vy) ascendingly;5

foreach Yq ∈ Vy do6

foreach sli ∈ Vk do7

if Ysli == Yq then8

Vsorted += sli;9

Vk -= sli;10

sort lines in Vcc according to Y-axis;11

insert Vcc into Vsorted according to Y-axis;12

of table captions, such as “Table, TABLE, Form, FORM,”
etc. Each table caption starts with a keyword. If more than
one table is displayed together, the keyword is very useful
to separate the tables from each other. At the beginning, we
check all the lines (not only the sparse line) in a page. Once
we detect a line starting with a keyword, we treat it as a table
caption candidate. Then we check the subsequent sorted
sparse lines and merge them into a sparse area, according
to the vertical distance between the lines. Different table
captions provide different hints and restraints on whether
we include the cross-column sparse lines or not.

If a table caption starts in the second document column
(e.g., the right table in Figure 2a), the table boundary can
not span the first column. If a table caption satisfies one of
the following conditions, it is a cross-column table: 1) the
width of the table caption is larger than the document col-
umn width; 2) the starting X-axis value of the caption is on
the right of the midpoint of the first document column. Once
we confirm a table as a cross-column table, we treat each Y-
axis value as a table row. Otherwise, every table row can
only include the sparse lines within the current document
column. Because we will zoom in and analyze the detected
table boundary carefully in the later table structure decom-
position phase, we treat recall more importantly than preci-
sion by accepting false positive table boundary contents.

If a table caption is shorter than the document column
width, and its beginning position aligns with that of the first
document column (see the table caption in Figure 1), it is
difficult to judge whether this table a cross-column table or
not. For such a case, we assume it as a single-column table
initially, after figure out the document column where the
caption belongs to, we check the same Y-axis area in the
next document column. If this area is also a sparse area, we
merge the new area into the table boundary and treat this

1009

table as a cross-column table. Once we find a new table
caption in the new area, it indicates the existing of parallel
tables.

5 Experiments and Results
Our experiments can be divided into two parts: the eval-

uation of the text sequence recovering and the table bound-
ary detection. A five-user study is implemented. Each user
checked the sequence of the resorted sparse lines in 20 se-
lected PDF pages. Half of them have within-table sequence
errors and the other half have beyond-table sequence errors.
The evaluation metric is pairwise accuracy. If HR is the
sequence decided by human judgement and AR is the se-
quence decided by the algorithms, the pairwise accuracy
can be defined as the fraction of times that our algorithms
and human judges agree on the sequence: pairwise accu-
racy = |HR∩AR|

HR
. For algorithm 1, the correct sequence of

human judge is column by column. For algorithm 2, hu-
mans treat each page as a single-column page. Comparing
such “golden standard”, the pairwise accuracy of both al-
gorithms are 100%. Still using the Figure 3a as the example,
with our algorithms, the 13 non-duplicated Y-axis values af-
ter the sorting step are: 625.47974, 643.07983, 651.9796,
660.68005, 669.5801, 681.4798, 690.27966, 699.0797,
707.7796, 716.3797, 725.1799, 734.0797, 744.37976. Be-
cause the text sequence error always starts with the left
columns first, we do not need to sort the text pieces with
the same Y-axis values according to the X-axis coordi-
nate. After the sorting, the new sequence of these sparse
lines are: “Content (% m/m)”, “Proposed method”, “Refer-
ence”, “Peak Peak Flame value”, “Sample Element height
area AAS (%m/m)”, “Low melt Ag 43.9 44.1 45.1 44.46”,
“0.5 2.4 1.1”, “Cu 15.6 15.2 15.3 14-16”, “2.7 1.8 2.5”,
“Sample No.318+ Ag 25.7 25.2 25.7 ≈25”, “2.1 2.1 1.4”,
“Cu 34.4 33.7 34.8 ≈35”, “2.3 1.3 2.5”.

The evaluation metrics for the table boundary detection
are precision P and recall R. Given the number of true ta-
ble lines in our detected table boundary A, the number of
overlooked true positive table lines B, and the number of
misidentified true negative non-table lines C, P= A

A+C , and

R= A
A+B . The performance of two algorithms are listed in

Table 1. The reason for C are some non-table sparse lines
surrounding the table boundary. They usually also belong
to the table data.(e.g., the short lines of the table caption
and footnote). For single-column tables, Algorithm 2 may
have more C because of the possible sparse lines with sim-
ilar Y-axis values in the next document column. Because
the widths of cells in single-column table can not be large
and the noise lines in table boundary can be easily removed
in later table structure decomposition step, we prefer high
recall values. For cross-column tables, algorithm 1 will cut
each table into at least two parts. A merge postprocessing is
required. Algorithm 2 achieves better performance on such

tables. In summary, in the real application when we can
not know the table type in advance, algorithm 2 works bet-
ter than algorithm 1. For tables with within-table sequence
errors, our recovering algorithms do not fulfill much per-
formance improvement on both P and R because all the
lines belong to the table boundary come together without
interruption. However, for the tables with beyond-table se-
quence errors, the performance is much worse without our
algorithms: with the same test PDFs, the R is only 63.5%
without our algorithms because a table will be segmented
into several parts and some of them are filtered out because
of the small scope.

Table 1. The performance evaluation of two
text sequence resorting algorithms

Algo1(P) Algo1(R) Algo2(P) Algo2(R)
Cross-column tables 95.7% 49.8% 100% 99.6%
Single-column tables 96% 94.8% 94.5% 99.8%

6 Conclusion
In this paper, we analyze a typical problem shared by the

PDF text extraction tools: the text sequence error. We pro-
pose two algorithms to recover the sequence of extracted
sparse lines, which improve the table content collection.
The experimental results not only compare the performance
of both algorithms, but also demonstrate the effectiveness of
text sequence recovering for the table boundary detection.
The results show that the second algorithm achieves better
results for both single-column table and cross-column table.
It is proved that the text sequence recovering work plays a
crucial role in the table boundary detection field.

References

[1] R. Cattoni, T. Coianiz, S. Messelodi, and C. Modena. Geo-
metric layout analyis techniques for document image under-
standing: a review. ITC-IRST Technical Report 9703-09.

[2] H. Chao and J. Fan. Layout and content extraction for pdf
documents. In DAS04, pages 213–224, 2004.

[3] Y. Liu, P. Mitra, and C. L. Giles. A fast preprocessing method
for table boundary detection: Narrowing down the sparse lines
using solely coordinate information. In DAS, 2008.

[4] Y. Liu, P. Mitra, and C. L. Giles. Identifying table boundaries
in digital documents via sparse line detection. In CIKM, pages
1311–1320, 2008.

[5] X. Wang. Tabular abstraction, editing, and formatting. In
Ph.D. Thesis, Dept. of Computer Science, University of Water-
loo, 1996.

[6] Y. Wang and J. Hu. Detecting tables in html documents. In
In Proc. of the 5th IAPR Int’l Workshop on Document Analysis
Systems, Princeton, NJ, 2002.

[7] B. Yildiz, K. Kaiser, and S. Miksch. pdf2table: A method to
extract table information from pdf files. In Proceedings of the
2nd Indian International Conference on Artificial Intelligence
(IICAI05), Pune, India, 2005.

1010

