close

This year, CVC presented a total of 5 papers at the annual Computer Vision and Pattern Recognition conference (CVPR). The conference was held from the 16th to the 20th of June in Long Beach, California.

The work presented at this year’s CVPR was the following:

Orals:

Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados and Yi-Zhe Song.

Tuesday 18th of June at 13:53h – 1330 – 1520   Oral 1.2A

In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research

Posters

Learning Metrics from Teachers: Compact Networks for Image Embedding

Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer, Yongmei Cheng and Arnau Ramisa

Tuesday 18th of June at 15:20h – 1520 – 1800   Poster 1.2 – #43

Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators’ outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets.

Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados and Yi-Zhe Song.

Tuesday 18th of June at 15:20h – 1520 – 1800   Poster 1.2 – #22 

In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research

Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval

Anjan Dutta and Zeynep Akata

Wednesday 19th of June at 10:00h – 1000 – 1245   Poster 2.1 – #54

Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators’ outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets.

What does it mean to learn in deep networks? And, how does on detect adversarial attacks?

Ciprian A. Corneanu, Meysam Madadi, Sergio Escalera and Aleix M. Martinez.

Wednesday 19th of June at 10:00h – 1000 – 1245   Poster 2.1 – #20

The flexibility and high-accuracy of Deep Neural Networks (DNNs) has transformed computer vision. But, the fact that we do not know when a specific DNN will work and when it will fail has resulted in a lack of trust. A clear example is self-driving cars; people are uncomfortable sitting in a car driven by algorithms that may fail under some unknown, unpredictable conditions. Interpretability and explainability approaches attempt to address this by uncovering what a DNN models, i.e., what each node (cell) in the network represents and what images are most likely to activate it. This can be used to generate, for example, adversarial attacks. But these approaches do not generally allow us to determine where a DNN will succeed or fail and why . i.e., does this learned representation generalize to unseen samples? Here, we derive a novel approach to define what it means to learn in deep networks, and how to use this knowledge to detect adversarial attacks. We show how this defines the ability of a network to generalize to unseen testing samples and, most importantly, why this is the case.

Good News, Everyone! Context driven entity-aware captioning for news images

Ali Furkan Biten, Lluis Gomez, Marçal Rusiñol and Dimosthenis Karatzas

Thursday 20th of June at 15:20h – 1520 – 1800   Poster 3.2 – #188   

Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce `GoodNews’, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results.

Nuria Martínez

The author Nuria Martínez