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Abstract

In this article, we focus on the problem of large-scale
instance-level image retrieval. For ef�ciency reasons, itis
common to represent an image by a �xed-length descriptor
which is subsequently encoded into a small number of bits.
We note that most encoding techniques include an unsuper-
vised dimensionality reduction step. Our goal in this work
is to learn a better subspace in a supervised manner. We es-
pecially raise the following question: “can category-level
labels be used to learn such a subspace?”

To answer this question, we experiment with four learn-
ing techniques: the �rst one is based on a metric learn-
ing framework, the second one on attribute representations,
the third one on Canonical Correlation Analysis (CCA) and
the fourth one on Joint Subspace and Classi�er Learning
(JSCL). While the �rst three approaches have been applied
in the past to the image retrieval problem, we believe we are
the �rst to show the usefulness of JSCL in this context.

In our experiments, we use ImageNet as a source of
category-level labels and report retrieval results on two
standard datasets: INRIA Holidays and the University of
Kentucky benchmark. Our experimental study shows that
metric learning and attributes do not lead to any signi�cant
improvement in retrieval accuracy, as opposed to CCA and
JSCL. As an example, we report on Holidays an increase in
accuracy from 39.3% to 48.6% with 32-dimensional repre-
sentations. Overall JSCL is shown to yield the best results.

1. Introduction

We consider the problem of query-by-example instance-
level image retrieval: given a query image of an object or a
scene, we want to retrieve within a potentially large dataset
other instances of the exact same object or scene.

Most state-of-the-art large-scale retrieval systems consist
in extracting local descriptors, such as SIFT [24], and ag-
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gregating them into a �xed-length vector. Within this broad
framework, we can distinguish two fairly different lines of
research. The �rst one is based on the bag-of-visual-words
(BOV) framework [33] and describes an image as a very
high-dimensional and very sparse histogram of visual-word
counts. Retrieval ef�ciency is achieved through the use of
inverted �les. While such an approach can obtain excellent
results [17, 27], it is dif�cult to scale to more than a couple
of millions of images without dedicated hardware. The sec-
ond one consists in describing images with typically smaller
and denser vectors, such as the GIST [26], the Fisher vec-
tor [28, 30] or the VLAD [20], and then performing some
form of encoding. It has been shown that, even with fairly
small codes consisting of a few hundreds of bits, this ap-
proach could yield excellent results at a very low cost (see
e.g. [38, 31, 29, 20, 12]). In this work, we follow this second
line of research.

We note that most encoding techniques include a pro-
jection step which is generally learned in an unsupervised
manner. Our goal in this paper is to learn a better projection
by leveraging labeled data to improve the retrieval accuracy
for a target compression rate (or the compression rate for
a target accuracy). Note that, since we learn the dimen-
sionality reduction in a manner which is independent of a
particular encoding technique, our work has the potential to
impact a broad range of retrieval algorithms.

An important question is the source of labeled data
which we should use for supervised learning. Since our
goal is to performinstance-levelretrieval, it would only
seem natural to use datasets labeled at the instance level.
However, these datasets are typically small and as a conse-
quence insuf�cient to learn a good subspace (this is shown
experimentally in section7.2). For instance, the two stan-
dard instance-level datasets we use in our experiments con-
tain only 1,500 and 10,000 images approximately. On the
other hand, there exist very large datasets of images anno-
tated at thecategory-levelsuch as ImageNet [9] which con-
tains as of today around 14M images of 22,000 categories.
Therefore, we ask in this paper the following question:can
category-level labels be used to improve instance-level im-
age retrieval?.
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Figure 1. Results for four Holiday queries on a dataset of 1M+images. For each query (left image), we show the top 5 retrieved images
using PQ codes of 128 bits: the top row corresponds to the PCA projection baseline and the bottom row to the semantic projection with the
proposed JSCL. Green frames denote correct results. See section 7 for experimental details.

This actually calls for another question: why should
category-level labels help instance-level retrieval in the �rst
place? We note that typical instance-level retrieval systems
sometimes make gross mistakes,i.e. return among the top
ranked results images which are visually similar but seman-
tically unrelated. Injecting category-level informationin the
dimensionality reduction step should guide the retrieval sys-
tem towards more semantically consistent results as shown
for instance in Figure1.

We propose to experiment with four algorithms which
learn a set of projections from labeled data. The �rst one
is based onmetric learningand casts the problem of di-
mensionality reduction as that of learning a low-rank Ma-
halanobis metric [1, 6]. Using a large margin framework,
similar images are enforced to be closer in the subspace than
dissimilar ones. The second one proposes to learn a set of
classi�ers and to represent an image as a vector ofattribute
scores[35, 34, 11]. The similarity between two images is
then computed in this attribute space. The third one is based
on Canonical Correlation Analysis(CCA) [14] and per-
forms an embedding of labels and images in a common sub-
space in which the similarity can be computed [2, 12]. The
fourth one consists in learningjointly a subspace and classi-
�ers (JSCL). The classi�ers are subsequently discarded and
only the subspace information is used for retrieval.

Our experiments show that the joint classi�er and sub-
space learning approach performs best. For instance, in
large-scale experiments on the Holidays dataset, we im-
prove the PCA baseline from 39.3% to 48.6% for a target
of 32 dimensions. Hence our two main contributions in this
paper are to show (i) that category-level labeled data can
be leveraged to improve instance-level retrieval and (ii) that

jointly learning a set of classi�ers and a dimensionality re-
duction using a large margin framework achieves this goal.

The remainder of this article is organized as follows. In
the next section we review the related work. In sections3
to 6, we describe the subspace learning approaches we ex-
perimented with: metric learning, attributes, CCA and joint
classi�er and subspace learning. In section7 we compare
these four algorithms on two public benchmarks.

2. Related Work

We now review related work in the �elds which are clos-
est to our large-scale retrieval problem – data encoding,
metric learning and attribute-based retrieval – while empha-
sizing the differences with our own work.

Data encoding. Many works have proposed to trans-
form high-dimensional vectorial representations into com-
pact codes. This includes Locality Sensitive Hashing (LSH)
[15, 5], Spectral Hashing (SH) [38], Hamming Embedding
(HE) [17], Locality Sensitive Binary Coding (LSBC) [31],
Packing [18], Semi-Supervised Hashing (SSH) [36], Trans-
form Coding (TC) [4], PCA Embedding (PCAE) [13], Iter-
ative Quantization (ITQ) [12] or Product Quantization (PQ)
[19, 20]. Despite the signi�cant differences between these
algorithms, all of them include a projection of the origi-
nal image signatures into an intermediate real-valued space,
as noted for instance in [13]. The projections are either
random (as in LSH, LSBC, HE or Packing) or learned in
an unsupervised manner, for instance with PCA (as in SH,
TC, SSH, PCAE, PQ) or with an algorithm which reduces
the quantization error (as in ITQ). The only work we are
aware of which leverages labeled data to learn better embed-
dings for large-scale retrieval is that of Gong and Lazebnik



[12]. For this purpose, they propose to use CCA. This is
one of the approaches we will experiment with (c.f. section
5). Note however that [12] uses category-level labels to im-
prove category-level retrieval (also referred to as “semantic”
retrieval) while we are interested in leveraging category-
level labels to improveinstance-levelretrieval.

Metric learning 1. Several works have proposed to lever-
age category-level labels to learn a similarity measure (ora
distance) between two image descriptors. Note that there
is a signi�cant body of work in the machine learning com-
munity on how to “learn to retrieve” [21, 37, 1, 6, 7]. Met-
ric learning has application to category-level image retrieval
[6] but also to problems such as domain adaptation [22].

Attributes. An alternative to metric learning which
has recently become popular consists in learning a set of
attributes and in describing an image by a vector of at-
tribute scores (see [23, 35, 34, 11, 8, 10, 32] among others).
Again, almost all these works have considered the prob-
lem of leveraging category-level labeled data to improve
category-level retrieval. A noticeable exception is the work
of Douzeet al. who proposed to use category-level labels
to improve instance-level retrieval by fusing Fisher vectors
and attributes [11]. Therefore, we will experiment with at-
tributes in our study (c.f. section4). However, while [11]
reports a signi�cant accuracy improvement with respect to
a PCA baseline, our results are somewhat different (c.f. sec-
tion 7.3).

3. Metric Learning

In an image retrieval task, letq; d 2 RD denote the
D-dimensional feature vectors representing a query and a
database image, respectively. We consider parametric im-
age similarities given by the bilinear form

s(q; d) = qT W d; (1)

whereW 2 RD � D . WhenW = I , s(q; d) reduces to the
dot-product. Instead of optimizingW directly, we consider
the decompositionW = UT U, as proposed for instance in
[1], whereU 2 RR� D (with R < D ). Then Eq. (1) can be
re-written as

s(q; d) = qT UT Ud = ( Uq)T (Ud): (2)

Eq. (2) is interesting from the point of view of data com-
pression, since it expresses the similarity as a dot-product in
a low dimensional space given by the projection matrixU.
OptimizingU thus amounts to �nding the linear sub-space
in which the dot-product is an optimal similarity measure.

A natural framework to learnU is the large margin rank-
ing framework [1]. Given a queryq, a relevant imaged+

1In what follows, we abuse the language and use the term “metric learn-
ing” to refer to the body of work which includes both distanceand similar-
ity learning

and an irrelevant imaged� , a good similarity measure sat-
is�es the property:s(q; d+ ) > s (q; d� ), i.e. matching pairs
should have a higher similarity than non-matching pairs.
Given a set of triplets(q; d+ ; d� ), the goal is to minimize
an upper-bound on the ranking loss:

X

(q;d+ ;d � )

maxf 0; 1 � s(q; d+ ) + s(q; d� )g: (3)

Since it is typically infeasible to scan all possible triplets,
this loss function can be optimized using Stochastic Gradi-
ent Descent (SGD) [3]. Following straightforward deriva-
tions, it is possible to show that the training procedure con-
sists in repeating the two following steps: (i) sample a triplet
(q; d+ ; d� ) randomly, and (ii) perform the gradient update

U  U + �U (q� T + � qT ) (4)

if the lossmaxf 0; 1� s(q; d+ )+ s(q; d� )g is positive, where
� = d+ � d� and� is the learning rate. Although the ob-
jective function (3) is not convex after the low-rank decom-
position, it was shown in [1] that good results are obtained
in practice by initializing the values ofU randomly (from
a zero-mean Normal distribution). We also experimented
with an initialization from the PCA solution but this did not
make a major difference. Also, following [1] we do not reg-
ularizeU explicitly (e.g. by penalizing the Frobenius norm
of U) but implicitly with early stopping.

4. Attributes

The principle of attribute-based representations is to de-
scribe an image with respect to a set ofK “discriminative”
conceptsA = f a1; : : : aK g referred to as attributes. The
relevances(q; ak ) of the imageq with respect to each at-
tribute ak is measured and the �nal representation is a K-
dimensional vector of attribute scores:

[s(q; a1); : : : ; s(q; aK )] : (5)

In the vast majority of cases, the attributes are learned us-
ing a large margin framework2, e.g. by training one binary
Support Vector Machine (SVM) classi�er for each attribute
[23, 35, 34, 11, 8, 32]. If the number of attributes is smaller
than the number of dimensions in the original space (a de-
sirable property in general), then this representation canbe
understood as the projection of a high-dimensional repre-
sentation onto a “semantic subspace”. Simple metrics, such
as the dot-product of the Euclidean distance are typically
used to measure the similarity within the attribute space.

2An exception is [10] which usesk-NN classi�cation to measure the
relevance of an image with respect to an attribute. While this approach was
reported to yield excellent results for category-level retrieval, we found it
to yield poor results in our instance-level retrieval scenario.



An issue with the attribute-based approach is that the di-
mensionality of the subspace is �xed given the number of
attribute classes. However, in practice, one would like to be
able to tune the dimensionality of the subspace based, for
instance on a target compression factor. Douzeet al. ex-
plored two simple approaches to circumvent this problem
[11]. The �rst one consists in selecting a subset of attribute
classes while the second one simply consists in applying
PCA on the vector of attribute scores. Since the later ap-
proach was found to yield better results, this is the one we
used in our own experiments. Note that Douzeet al. also
proposed to merge Fisher vectors and attribute vectors by
concatenating these representations. This is an approach we
will also evaluate in section7.3.

5. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [14] is a well-
known tool for multi-view dimensionality reduction. In a
nutshell, the goal of CCA is to project the multiple views
into a common subspace where the correlation is maximal.

Let us consider a set ofN samples, and letA 2 RD a � N

andB 2 RD b � N be two views of the data represented by
mean-centered column feature vectors. In general, the di-
mensionality of the vectors inA andB are different,i.e.
Da 6= Db. Let us also de�ne the matricesCaa = AA T + �I ,
Cbb = BB T + �I , Cab = AB T , andCba = CT

ab, where
� is a small regularization factor usually added to avoid nu-
merically ill-conditioned situations.

The goal of CCA is to �nd a projection of each view that
maximizes the correlation between the projected represen-
tations. This can be expressed as:

argmax
u2 RD a ;v 2 RD b

uT Cabv (6)

s.t. uT Caa u = 1 andvT Cbbv = 1 : (7)

u and v are respectively the projections that embed the
data fromA andB into a one-dimensional common sub-
space where the correlation is maximal. To obtain a sub-
space ofR dimensions we need to solve equation (6) R
times to obtain the set of projectionsf u1; u2; : : : ; uR g and
f v1; v2; : : : ; vR g, subject to them being uncorrelated. This
can be casted as a symmetric eigenvalue problem:

C � 1
aa CabC � 1

bb CbauR = � 2
R uR : (8)

The R leading eigenvectors of equation (8) constitute the
projection matrixU 2 RR� D a used to embedA into the
R-dimensional subspace. The embedding ofB , if needed,
can be solved analogously.

In [12], CCA was used to perform supervised dimen-
sionality reduction using respectively the image descriptors
and labels as the two views. The labels were encoded as a
matrixB 2 f 0; 1gK � N , whereK is the number of classes,

and whereBk;n = 1 if imagen belongs to categoryk, and
0 otherwise. In such a case, CCA can be understood as an
embedding of images and labels in a common subspace.

6. Joint Subspace and Classi�er Learning

As is the case of CCA, we seek to embed labels and im-
ages in a common subspace. However, we wish to do so in
a large margin framework. Given an image and a set of rel-
evant and irrelevant labels, we want to enforce the relevant
labels to be closer to the image in the subspace than the
irrelevant ones. This process can be understood as jointly
learning a set of classi�ers and a dimensionality reduction.
This is more optimal than learning a set of attribute classi-
�ers and then a dimensionality reduction as in [11].

We now describe the mathematical framework. Letq
be an image descriptor and lety be a category. We as-
sume thatq 2 RD and that there areK categories,i.e.
y 2 f 1; : : : ; K g. Let us measure the relevance ofy with
respect toq (i.e. the score of classy onq) as follows:

s(q; y) = ( Uq)T wy (9)

whereU 2 RR� D matrix which projectsq in a R dimen-
sional subspace (withR < D andR � K ) andwy is the
classi�er of classy in the low-dimensional space. Hence,
the projection matrixU is shared across all classes. Given a
set of triplets(q; y+ ; y� ) wherey+ is relevant toq andy�

is irrelevant toq (i.e. q is labeled withy+ but not withy� ),
we minimize an upper-bound on the label ranking loss:

X

(q;y + ;y � )

max
�

0; 1 � s(q; y+ ) + s(q; y� )
	

(10)

Westonet al. proposed a similar objective function in [16]
for annotation purposes. In what follows, we choose to op-
timize equation (10) because it is more similar to the met-
ric learning framework of [1] that we use as a baseline and
therefore, it offers a fairer comparison. Note that we also
ran experiments with the objective function proposed by
Westonet al. and we found it to yield very similar results.

As was the case for metric learning, this objective func-
tion can be optimized with SGD by sampling a triplet
(q; y+ ; y� ). If the lossmax f 0; 1 � s(q; y+ ) + s(q; y� )g
is positive, then the following update rules are applied:

U  U + � (wy + � wy � )qT (11)

wy +  wy + + �Uq (12)

wy �  wy � � �Uq (13)

where� is again the learning step size. As was the case for
metric learning, we initial the matrixU randomly (from a
zero-mean Normal distribution). and use early stopping for
regularization. After learning, we discard the classi�erswy

and keep only the projection matrixU.



7. Experimental validation

We �rst describe the datasets and features we used in our
experiments. We then provide results for the metric learning
and attribute-based approaches. Finally, we present results
for the two label-image embedding techniques: CCA and
joint classi�er and subspace learning.

7.1. Datasets and features

Datasets. We use the two following public benchmarks
for evaluation. INRIA Holidays3 [17] contains 1,491 im-
ages of 500 scenes and objects. One image per scene / ob-
ject is used as query to search within the remaining 1,490
images and accuracy is measured as the Average Precision
(AP) averaged over the 500 queries (mAP). TheUniversity
of Kentucky Benchmark(UKB)4 [25] contains 10,200 im-
ages of 2,550 objects. Each image is used in turn as query to
search within the 10,200 images and accuracy is measured
as4� recall@4 averaged over the 10,200 queries. Hence,
the maximum achievable score is 4 on this dataset.

We use the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2010 dataset5 for learning purposes.
We use it both for unsupervised learning (e.g. to learn a
PCA) and for supervised learning (e.g. to learn a metric,
attributes, CCA, etc.) This dataset contains 1,000 classes
and consists of 3 sets: a training, a validation and a test set.
In our experiments, we only make use of the training set
which contains 1.2M images.

For the large-scale experiments reported in Section7.4,
we also use a subset of 1M ImageNet images to serve as
distractors. They were randomly sampled from the full Im-
ageNet dataset [9] (excluding the ILSVRC 2010 categories)

Features. We extract 128-dimensional SIFT descrip-
tors [24] and 96-dimensional color descriptors [30] on reg-
ular grids at multiple scales. Contrarily to most previ-
ous instance-level retrieval works, we do not make use of
interest-point detectors. We found dense extraction to yield
somewhat better (resp. worse) results on Holidays (resp.
UKB). Note however that this saves the interest-point de-
tection time which is substantial in our large-scale experi-
ments. These features are reduced to 64 dimensions with
PCA. We compute separately for each descriptor a 2,048-
dimensional Fisher Vector (FV) which is power- and L2-
normalized [29, 30]. The SIFT and color FVs are subse-
quently concatenated, thus yielding a 4,096-dim image de-
scriptor. The distance between two FVs is computed with
a dot-product [29]. This provides a baseline of 77.4% on
Holidays and 3.19 on UKB.

3http://lear.inrialpes.fr/ ˜ jegou/data.php
4http://www.vis.uky.edu/ ˜ stewe/ukbench/
5http://www.image-net.org/challenges/LSVRC/2010

Figure 2. First row: random images from the ImageNet category
n02930766 (“cab, hack, taxi, taxicab”). Second row: n03786901
(“mortar”). Third row: n04147183 (“Schooner”).

R = 16 32 64 128 256 512
PCA 53.1 61.3 68.0 72.3 75.0 76.8
IL 52.1 62.9 67.1 73.2 75.8 77.1
CL 36.8 54.2 65.1 68.9 75.4 78.6

Table 1. Subspace learning as metric learning. Results on Holidays
(mAP, in %) when learning with Instance Level (IL) and Category
Level (CL) labels.

R = 16 32 64 128 256 512
PCA 2.56 2.82 3.01 3.08 3.15 3.18
IL 1.09 1.99 2.55 2.90 3.07 3.16
CL 1.80 2.37 2.78 2.95 3.09 3.16

Table 2. Subspace learning as metric learning. Results on UKB
(4� recall@4) when learning with Instance Level (IL) and Cate-
gory Level (CL) labels.

7.2. Results with metric learning

When learning a metric for a target subspace dimension
R, two parameters need to be tuned: the step size� as well
as the number of iterationsniter . We performed two sets of
experiments. In the �rst set of experiments we learn the sub-
space from ILSVRC 2010. To avoid tuning� andniter on
the test data, we validated our Holidays results on UKB and
vice versa,i.e. we report results on Holidays (resp. UKB)
with the parameters that lead to the best results on UKB
(resp. Holidays). This shows the ability of the learning
algorithm to generalize to new data. In the second set of ex-
periments, we learn the subspace from instance-level labels.
For the Holidays experiments, we therefore trained the sub-
space on UKB and vice-versa. In this set of experiments,
� andniter were tuned directly to maximize test accuracy
which gives an unfair advantage to this approach.

The metric learning results are reported in Tables1 and



Holidays UKB
FV (4,096 dim) 77.4% 3.19
Attr (1,000 dim) 76.2% 3.27
FV + Attr (5,096 dim) 78.1% 3.27

Table 3. Combining FVs and attributes. Results on Holidays
(mAP, in %) and UKB (4� recall@4).

2 and compared to the PCA baseline. We can draw the two
following conclusions. First, metric learning with instance-
level labels (IL) does not signi�cantly improve accuracy on
Holidays or UKB. It is actually signi�cantly worse than the
PCA baseline on UKB. We believe this is because the train-
ing datasets (UKB for Holidays and Holidays for UKB) are
too small to learn a meaningful subspace. Note that we are
not aware of any signi�cantly larger dataset with instance-
level labels. Second, metric learning on category-level la-
bels (CL) yields poor results, especially for a small number
of dimensionsR. We observe a small improvement with re-
spect to the PCA baseline on Holidays for a largerR (e.g.
R = 512). Our intuition to explain these poor results is
the following one: although images within the same cate-
gory might be visually dissimilar (c.f. Fig 2), metric learn-
ing tries to enforce them explicitly to be closer to each other
than to images in other categories.

7.3. Results with attributes

To learn the attribute classi�ers, we �rst extract from
the 1.2M ILSVRC 2010 training images the same 4,096-
dimensional FV features we use for retrieval (c.f. section
7.1). We then learn 1,000 one-vs-all binary linear SVMs
using SGD6. Note that learning classi�ers on FVs makes
sense as shown for instance in [30]. Given an image, we
construct its attribute vector by concatenating the 1,000
classi�er scores, which yields a 1,000-dimensional vector.
Hence, the computation of the attribute scores can be un-
derstood as a linear projection in a 1,000-dimensional sub-
space. The attribute vector is subsequently L2-normalized
and we use the dot-product as a measure of similarity. Fol-
lowing [11], we also report results combining the FV and
the attributes. As suggested by [11], we apply a weighting
factor to increase the contribution of the FV. To avoid tun-
ing this parameter on the test data, the optimal weight for
Holidays (resp. UKB) was cross-validated on UKB (resp.
Holidays). Results are reported in Table3. We observe that
attributes perform slightly worse than FVs on Holidays and
slightly better on UKB. We also note that there seems to be
little complementarity between FVs and attributes.

Since our focus is on subspace learning, we also per-
form dimensionality reduction by applying PCA to the FV
and the attributes independently and by concatenating the
resulting vectors, as suggested in [11]. To produce a sig-

6http://leon.bottou.org/projects/sgd

R = 16 32 64 128 256 512
FV 53.1 61.3 68.0 72.3 75.0 76.8
FV + Attr 49.3 60.3 66.4 71.2 75.2 76.8

Table 4. Combining FVs and attributes after PCA. Results on Hol-
idays (mAP, in %).

nature ofR dimensions, FVs and attributes are reduced to
R=2 dimensions and concatenated. Again, we tune the rel-
ative weight of the FV part with respect to the attribute part.
Table4 compares this approach with the PCA baseline on
the Holidays dataset and we observe no improvement.

These results somewhat contradict those of [11] who re-
ported a signi�cant improvement on Holidays when merg-
ing FVs and attributes. We believe this is because the fea-
tures used by [11] to learn the attributes contained informa-
tion not available in the FV. For instance, their attributes
used, among others, color information, while their FVs
were computed from SIFT descriptors only. To test this con-
jecture, we computed 2,048-dimensional FVs using only
SIFT descriptors as well as 1,000-dimensionalattribute vec-
tors computed from color-only descriptors. Combining the
FV and attributes in this case makes a signi�cant difference
on Holidays: from 68.5.% using SIFT FVs (2,048 dimen-
sions) to 76.2% when concatenating SIFT FVs and color
attributes (3,048 dimensions). We believe this experiment
validates our point. Note that we can obtain a similar accu-
racy of 76.8% in a simple manner, by reducing the dimen-
sionality of the 4,096-dimensional SIFT+color FV to 512
dimensions.

Our conclusion is therefore that attributes do not seem
to improve instance-level retrieval signi�cantly on these
datasets.

7.4. Results with labelimage embedding

We now report results for those two approaches which
perform an embedding of images and labels in a common
subspace: CCA and the proposed Joint Subspace and Clas-
si�er Learning (JSCL).

For both the CCA and JSCL, we use again ILSVRC 2010
for learning. For CCA, there is a single parameter to tune:
the regularization parameter� (c.f. section5). As for JSCL,
there are two parameters to tune (as was the case for metric
learning): the step size� and the number of iterationsniter .
As was the case in our previews experiments, to avoid tun-
ing the parameters on the test data, we validate the Holidays
(resp. UKB) parameters on UKB (resp. Holidays). We re-
port results on Holidays in Table5 and UKB in Table6.

We can make the two following observations. First, both
label-image embedding methods improve over the PCA
baseline, especially for a small number of dimensionsR of
the subspace (e.g. R = 32). Second, JSCL generally yields
better results than CCA. This seems to indicate that using a



R = 16 32 64 128 256 512
PCA 53.1 61.3 68.0 72.3 75.0 76.8
CCA 54.5 62.9 71.0 74.7 77.6 79.0
JSCL 56.7 67.7 73.6 76.4 78.3 78.9

Table 5. Results of CCA and the proposed JSCL as compared to
the PCA baseline on Holidays (mAP, in %).

R = 16 32 64 128 256 512
PCA 2.56 2.82 3.01 3.08 3.15 3.18
CCA 2.52 2.90 3.11 3.22 3.29 3.32
JSCL 2.67 3.04 3.23 3.31 3.36 3.36

Table 6. Results of CCA and the proposed JSCL as compared to
the PCA baseline on UKB (4� recall@4).

large margin framework enables to uncover a more discrim-
inative subspace. On UKB, we point out that we can both
reduce the dimensionality of the initial 4,096-dimensional
FV representation down to 256 dimensions and increase the
retrieval accuracy from 3.19 to 3.36.

Since our focus is on large-scale retrieval, we also per-
formed an evaluation with a large set of distractor images
as is common practice (seee.g. [17, 27, 20, 11]). In our ex-
periments, we use 1M ImageNet images (c.f. section7.1).
Hence, when running a search on Holidays (resp. UKB),
the system compares the query to the 1,490 (resp. 10,200)
database images + 1M distractors. We ran two sets of ex-
periments. In the �rst set of experiments, the dimension-
ality of the FV is reduced (through PCA, CCA or JSCL)
but no further compression is applied. In the second set of
experiments, the dimensionality of the FV is reduced and a
Product Quantization (PQ) [19] is further applied to encode
the descriptors. We chose PQ since it yields state-of-the-art
codes when combined with dimensionality reduction [20]
but other encoding techniques could have been applied too.
In a nutshell, PQ splits the large FV into small sub-vectors
and applies a separate Vector Quantizer (VQ) to each sub-
vector independently (see [19] for more details). In our ex-
periments we use sub-vectors of 8 dimensions and each sub-
vector is encoded on 8 bits. Hence, with such a con�gura-
tion, if PQ takes as input a K-dimensional vector, it outputs
a K bits code.

Results for Holidays and UKB are presented in Fig.3.
We can draw the following conclusions. As in the case
of small-scale experiments, CCA and JSCL improve over
PCA. Moreover, JSCL seems to have an edge over CCA.
These observations are valid whether PQ encoding is ap-
plied or not. The differences with the PCA baseline seem
more acute in large-scale experiments than in small-scale
experiments. For instance, the retrieval accuracy is im-
proved from 39.3% with PCA to 48.6% with JSCL with
R = 32 (without compression) on Holidays. This seems to
indicate that learning good projections has a larger impact
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Figure 3. Large-scale results of CCA and the proposed JSCL as
compared to the PCA baseline. Top: Holidays + 1M distractors
(mAP in %). Bottom: UKB + 1M distractors (4� recall@4).

for more complex problems,e.g. when the relevant images
are lost in a sea of irrelevant ones.

Finally, Figure 1 shows qualitative results on Holi-
days+1M using PQ codes of 128 bits. We show the top
5 results on 4 queries and compare the PCA and JSCL em-
beddings. The queries have been chosen such as that there is
no intersection between the top PCA and JSCL results. We
observe how the JSCL results are semantically more consis-
tent than those of PCA, even if sometimes PCA �nds true
positives that JSCL misses, such as that of1d.

8. Conclusion

At the beginning of this article, we raised the follow-
ing question: can category-level labels be used to improve
instance-level image retrieval? We can now answer this
question positively. To reach this conclusion, we experi-
mented with four learning techniques: the �rst one is based
on a metric learning framework, the second one on at-
tribute representations, the third one on Canonical Corre-
lation Analysis (CCA) and the fourth one on Joint Sub-



space and Classi�er Learning (JSCL). While the �rst three
approaches had been applied to some extent to the image
retrieval problem in the past, we believe we are the �rst to
show the usefulness of JSCL in this context.

Our experimental evaluation showed that metric-
learning and attributes do not improve signi�cantly over the
baseline system. In some cases, it can even lead to a de-
crease in accuracy. We also showed that CCA and JSCL,
which both consist in embedding labels and images in a
common subspace, can lead to substantial improvements,
especially in large-scale experiments. Overall, JSCL yields
the best results and we believe that it superiority with re-
spect to the simpler CCA approach comes from the use of a
large margin formulation.

Thus, a key conclusion of our work is that one might get
a superior performance with a method such as JSCL which
optimizes a categorization objective function (which is con-
sistent with the category-level labels we use for training but
which is only loosely consistent with our retrieval objec-
tive) than with a method such as metric learning which op-
timizes a retrieval objective function (which is consistent
with our instance-level retrieval problem but which is in-
consistent with our category-level labels).

We �nally note that those methods which jointly embed
labels and images in a common subspace, such as CCA
and JSCL, have an additional advantage which we have not
exploited in this work. Indeed, since labels and images
have a common representation, one could easily perform
query-by-example and query-by-text searches within a uni-
�ed framework. We will explore the advantages of such an
approach in future work.
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descriptors into a compact image representation. InCVPR, 2010.1,
2, 7

[21] T. Joachims. Optimizing search engines using clickthrough data. In
KDD, 2002.3

[22] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what
you get: Domain adaptation using asymmetric kernel transforms. In
CVPR, 2011.3

[23] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect un-
seen object classes by between-class attribute transfer. In CVPR,
2009.3

[24] D. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 2004.1, 5

[25] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary
tree. InCVPR, 2006.5

[26] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic
representation of the spatial envelope.IJCV, 2001.1
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