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Abstract gregating them into a xed-length vector. Within this broad

framework, we can distinguish two fairly different lines of

In this article, we focus on the problem of large-scale research. The rst one is based on the bag-of-visual-words
instance-level image retrieval. For ef ciency reasonsisit  (BOV) framework 3] and describes an image as a very
common to represent an image by a xed-length descriptor high-dimensional and very sparse histogram of visual-word
which is subsequently encoded into a small number of bits.counts. Retrieval ef ciency is achieved through the use of
We note that most encoding techniques include an unsuperinverted les. While such an approach can obtain excellent
vised dimensionality reduction step. Our goal in this work results [L7, 27], it is dif cult to scale to more than a couple
is to learn a better subspace in a supervised manner. We esof millions of images without dedicated hardware. The sec-
pecially raise the following question: “can category-léve ond one consists in describing images with typically smalle
labels be used to learn such a subspace?” and denser vectors, such as the GISH],[the Fisher vec-

To answer this question, we experiment with four learn- tor [28, 30] or the VLAD [2(], and then performing some
ing techniques: the rst one is based on a metric learn- form of encoding. It has been shown that, even with fairly
ing framework, the second one on attribute representations small codes consisting of a few hundreds of bits, this ap-
the third one on Canonical Correlation Analysis (CCA) and proach could yield excellent results at a very low cost (see
the fourth one on Joint Subspace and Classi er Learning e.g [38, 31, 29, 20, 17]). In this work, we follow this second
(JSCL). While the rst three approaches have been applied line of research.
in the past to the image retrieval problem, we believe we are

the rst to show .the usefulness of JSCL in this context. jection step which is generally learned in an unsupervised
In our experiments, we use ImageNet as a source Ofyanner Our goal in this paper is to learn a better projection

category-level Iab.els and report retrieval results on two |,y je\eraging labeled data to improve the retrieval acgurac
standard datasets: INRIA Holidays and the University of ¢J. o target compression rate (or the compression rate for

Kentucky benchmark. Our experimental study shows thaty 5rget accuracy). Note that, since we learn the dimen-
metric learning and attributes do not lead to any signi cant sionality reduction in a manner which is independent of a

improvement in retrieval accuracy, as opposed to CCA and 5 ricylar encoding technique, our work has the poterdial t
JSCL. As an example, we report on Holidays an increase Nimpact a broad range of retrieval algorithms.

accuracy from 39.3% to 48.6% with 32-dimensional repre-

sentations. Overall JSCL is shown to yield the best results, AN important question is the source of labeled data
which we should use for supervised learning. Since our

goal is to performinstance-leveretrieval, it would only
seem natural to use datasets labeled at the instance level.
1. Introduction However, these datasets are typically small and as a conse-
guence insuf cient to learn a good subspace (this is shown
We consider the problem of query-by-example instance- experimentally in sectioi@.2). For instance, the two stan-
level image retrieval: given a query image of an object or a dard instance-level datasets we use in our experiments con-
scene, we want to retrieve within a potentially large ddtase tain only 1,500 and 10,000 images approximately. On the

We note that most encoding techniques include a pro-

other instances of the exact same object or scene. other hand, there exist very large datasets of images anno-
Most state-of-the-artlarge-scale retrieval systemsisbns  tated at theategory-levesuch as ImageNe®] which con-
in extracting local descriptors, such as SIEF][ and ag-  tains as of today around 14M images of 22,000 categories.
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Figure 1. Results for four Holiday queries on a dataset of iiviages. For each query (left image), we show the top 5 rettiémages
using PQ codes of 128 hits: the top row corresponds to the RGjagiion baseline and the bottom row to the semantic ptiojeevith the
proposed JSCL. Green frames denote correct results. Smnsétor experimental details.

This actually calls for another question: why should jointly learning a set of classi ers and a dimensionality re
category-level labels help instance-level retrieval i tist duction using a large margin framework achieves this goal.
place? We note that typical instance-level retrieval syste The remainder of this article is organized as follows. In
sometimes make gross mistakes, return among the top  the next section we review the related work. In secti®ns
ranked results images which are visually similar but seman-to 6, we describe the subspace learning approaches we ex-
tically unrelated. Injecting category-level informatiorthe perimented with: metric learning, attributes, CCA andfoin
dimensionality reduction step should guide the retrieyais  classi er and subspace learning. In sectibwe compare
tem towards more semantically consistent results as showrthese four algorithms on two public benchmarks.
for instance in Figuré.

We propose to experiment with four algorithms which 2. Related Work
learn a set of projections from labeled data. The rst one
is based ometric learningand casts the problem of di-

We now review related work in the elds which are clos-
est to our large-scale retrieval problem — data encoding,

mensionality reduction as that of learning a low-rank Ma- 1 atric learning and attribute-based retrieval — while eaaph
halanobis metricT, 6]. Using a large margin framework, sizing the differences with our own work.

similarimages are enforced to be closer in the subspace than Data encoding. Many works have proposed to trans-

dlissir_nilar ongs. The second One proposes to Iea;g a set Oform high-dimensional vectorial representations into eom
classi ers and to represent an image as a vectatbibute. pact codes. This includes Locality Sensitive Hashing (LSH)
scores[35, 34, 11]. The similarity between two images is 15, 5], Spectral Hashing (SH)E], Hamming Embedding
then computed in this attribute space. The third one is base HE) [17], Locality Sensitive Binary Coding (LSBCRI]

on Canonical Correlation Analysi§CCA) [14] and per- Packing [L9], Semi-Supervised Hashing (SSH, Trans-
forms an embedding of labels and images in a common sub+ .. Coding (TC) ], PCA Embedding (PCAE)I[3, Iter-

space in which .the _similari'Fy can be computed{?]. The . ative Quantization (ITQ)1Z] or Product Quantization (PQ)
fourth one consists in learningintly a subspace and classi- [19, 20]. Despite the signi cant differences between these

ers (JSCL). The CI?ISSi ers are _subsequently(_jiscarded andalgorithms, all of them include a projection of the origi-
only the subspace information is used for retrieval. nal image signatures into an intermediate real-valuedspac
Our experiments show that the joint classi er and sub- as noted for instance inLf]. The projections are either

space learning approach performs best. For instance, imrandom (as in LSH, LSBC, HE or Packing) or learned in
large-scale experiments on the Holidays dataset, we im-an unsupervised manner, for instance with PCA (as in SH,
prove the PCA baseline from 39.3% to 48.6% for a target TC, SSH, PCAE, PQ) or with an algorithm which reduces
of 32 dimensions. Hence our two main contributions in this the quantization error (as in ITQ). The only work we are
paper are to show (i) that category-level labeled data canaware of which leverages labeled data to learn better embed-
be leveraged to improve instance-level retrieval andt{axt  dings for large-scale retrieval is that of Gong and Lazebnik



[17). For this purpose, they propose to use CCA. This is
one of the approaches we will experiment withf ( section
5). Note however that![7] uses category-level labels to im-
prove category-level retrieval (also referred to as “setiméan
retrieval) while we are interested in leveraging category-
level labels to improvénstance-levetetrieval.

Metric learning 1. Several works have proposed to lever-
age category-level labels to learn a similarity measure (or

distance) between two image descriptors. Note that there

is a signi cant body of work in the machine learning com-
munity on how to “learn to retrieve™ 1, 37, 1, 6, 7]. Met-
ric learning has application to category-levelimage ev
[6] but also to problems such as domain adaptatich [
Attributes. An alternative to metric learning which

and an irrelevant image , a good similarity measure sat-
is es the propertys(q;d") >s(q;d ), i.e. matching pairs
should have a higher similarity than non-matching pairs.
Given a set of triplet§¢q; d* ;d ), the goal is to minimize
an upper-bound on the ranking loss:

X
maxf 0; 1

(g;d*5d )

s(q;d") + s(g;d )g:  (3)

Since itis typically infeasible to scan all possible trigle
this loss function can be optimized using Stochastic Gradi-
ent Descent (SGD)3]. Following straightforward deriva-
tions, it is possible to show that the training procedure-con

has recently become popular consists in learning a set ofSIStS in repeating the two following steps: (i) sample défip

attributes and in describing an image by a vector of at-
tribute scores (se€p, 35, 34, 11, 8, 10, 37l among others).

Again, almost all these works have considered the prob-

lem of leveraging category-level labeled data to improve
category-level retrieval. A noticeable exception is thekvo
of Douzeet al. who proposed to use category-level labels
to improve instance-level retrieval by fusing Fisher vesto
and attributesT1]. Therefore, we will experiment with at-
tributes in our studyd.f. section4). However, while [1]
reports a signi cant accuracy improvement with respect to
a PCA baseline, our results are somewhat differemt $ec-
tion 7.3).

3. Metric Learning

In an image retrieval task, lej;d 2 RP denote the

D-dimensional feature vectors representing a query and a

database image, respectively. We consider parametric im
age similarities given by the bilinear form

s(g;d = q"Wd; (1)

whereW 2 RP P. WhenW = |, s(q;d) reduces to the
dot-product. Instead of optimiziry directly, we consider
the decompositiokV = UT U, as proposed for instance in
[1], whereU 2 RR D (with R < D). Then Eq. {) can be
re-written as

s(a;d = q'UTUd=(UQgT(Ud): (@)

Eq. () is interesting from the point of view of data com-
pression, since it expresses the similarity as a dot-pitaduc
a low dimensional space given by the projection maltix
OptimizingU thus amounts to nding the linear sub-space
in which the dot-product is an optimal similarity measure.

A natural framework to learb) is the large margin rank-
ing framework [l]. Given a queryg, a relevant image"*

1In what follows, we abuse the language and use the term ‘orietin-
ing” to refer to the body of work which includes both distareel similar-
ity learning

(q;d";d ) randomly, and (ii) perform the gradient update

q') (4)

ifthe lossmaxf 0; 1 s(q; d" )+ s(qg;d )gis positive, where

d* d and isthe learning rate. Although the ob-
jective function 8) is not convex after the low-rank decom-
position, it was shown inll] that good results are obtained
in practice by initializing the values d randomly (from

a zero-mean Normal distribution). We also experimented
with an initialization from the PCA solution but this did not
make a major difference. Also, followin@]we do not reg-
ularizeU explicitly (e.g. by penalizing the Frobenius norm
of U) but implicitly with early stopping.

U U+ U(@q "+

4. Attributes

The principle of attribute-based representations is to de-
scribe an image with respect to a sekof‘discriminative”
conceptsA = fay;:::ax g referred to as attributes. The
relevances(q; &) of the imageq with respect to each at-
tribute ax is measured and the nal representation is a K-
dimensional vector of attribute scores:

(5)

In the vast majority of cases, the attributes are learned us-
ing a large margin framewofke.g by training one binary
Support Vector Machine (SVM) classi er for each attribute
[23, 35,34, 11, 8, 32]. If the number of attributes is smaller
than the number of dimensions in the original space (a de-
sirable property in general), then this representationbean
understood as the projection of a high-dimensional repre-
sentation onto a “semantic subspace”. Simple metrics, such
as the dot-product of the Euclidean distance are typically
used to measure the similarity within the attribute space.

2An exception is 10] which usesk-NN classi cation to measure the
relevance of an image with respect to an attribute. Whikedpproach was
reported to yield excellent results for category-levetiestl, we found it
to yield poor results in our instance-level retrieval scena



An issue with the attribute-based approach is that the di-and whereBy., = 1 if imagen belongs to categorly, and
mensionality of the subspace is xed given the number of 0 otherwise. In such a case, CCA can be understood as an
attribute classes. However, in practice, one would likego b embedding of images and labels in a common subspace.
able to tune the dimensionality of the subspace based, for
instance on a target compression factor. Doetzal ex- 6. Joint Subspace and Classi er Learning
plored two simple approaches to circumvent this problem
[11]. The rst one consists in selecting a subset of attribute
classes while the second one simply consists in applying
PCA on the vector of attribute scores. Since the later ap-

As is the case of CCA, we seek to embed labels and im-
ages in a common subspace. However, we wish to do so in
a large margin framework. Given an image and a set of rel-
proach was found to yield better results, this is the one we Evant and irrelevant Iabels,_ we want to enforce the relevant

labels to be closer to the image in the subspace than the

used in our own experiments. Note that Dowzel also jrrelevant ones. This process can be understood as jointl
proposed to merge Fisher vectors and attribute vectors by . : P . : . jointly
learning a set of classi ers and a dimensionality reduction

concatenating these representations. This is an appraachw__ . . . . - :
will also evaluate in sectiof. 3. This is more optimal than learning a set of attribute classi-

ers and then a dimensionality reduction as in].

5. Canonical Correlation Analysis We now describe the mathematical framework. pet
be an image descriptor and Igtbe a category. We as-
Canonical Correlation Analysis (CCA)L{] is a well- sume thatg 2 RP and that there ar& categoriesj.e.
known tool for multi-view dimensionality reduction. Ina y 2 f1;:::;Kg. Let us measure the relevanceyofvith

nutshell, the goal of CCA is to project the multiple views respect ta (i.e. the score of clasg on q) as follows:
into a common subspace where the correlation is maximal. T
Let us consider a set ®f samples, and lex 2 RP2 N s(a;y) = (Vg wy 9)
Dy N i
andB 2 R be two views of the data represented by.whereU 2 RR D matrix which projectsj in aR dimen-
mean-centered column feature vectors. In general, the di-

: ) : ; . sional subspace (WitR < D andR  K) andwy is the
mensionality of the vectors iA andB are different,i.e. classi er of classy in the low-dimensional space. Hence
D, 6 Dy. Letus also de nethe matric&,, = AAT+ |, Y pace. ’

Cp= BBT + | . Cap = ABT, andCp, = C;b: where the projection matrixJ is shared across all classes. Given a

; o\t +
is a small regularization factor usually added to avoid nu- fse_t of tnplets(q,y Y .) wherey 1S rflevant toq ?‘”dy
) : o L is irrelevant toq (i.e. qis labeled withy* but not withy ),
merically ill-conditioned situations. we minimize an upper-bound on the label ranking loss:
The goal of CCAisto nd a projection of each view that X PP g '
maximizes the correlation between the projected represen-

01 )+ ; 10
tations. This can be expressed as: max 0:1 s(@iy’)+ s(aiy ) (10)

(ay*y )
argmax u' CgpV (6)

Westonet al. proposed a similar objective function ifd]
u2RPa;v2RPb

for annotation purposes. In what follows, we choose to op-
st UTCaau =1 andv' Cppv = 1: (7) timize equation 10) because it is more similar to the met-
ric learning framework of J] that we use as a baseline and
therefore, it offers a fairer comparison. Note that we also
ran experiments with the objective function proposed by
Westonet al. and we found it to yield very similar results.

As was the case for metric learning, this objective func-
tion can be optimized with SGD by sampling a triplet
(@;y";y ). Ifthe lossmaxf0;1 s(q;y")+ s(a;y )g
is positive, then the following update rules are applied:

u andv are respectively the projections that embed the
data fromA andB into a one-dimensional common sub-
space where the correlation is maximal. To obtain a sub-
space ofR dimensions we need to solve equatid) R

can be casted as a symmetric eigenvalue problem:

Caa CabCpy Challr =  ZUR: (8)

U U+ (wy  wy, )q (11)
The R leading eigenvectors of equatio8) (constitute the Wy + wy+ + Uqg (12)
projection matrixU 2 RR D= used to embed into the w, w, Ugq (13)
R-dimensional subspace. The embeddin@¢fif needed,
can be solved analogously. where is again the learning step size. As was the case for

In [17], CCA was used to perform supervised dimen- metric learning, we initial the matrik) randomly (from a
sionality reduction using respectively the image desoript ~ zero-mean Normal distribution). and use early stopping for
and labels as the two views. The labels were encoded as aegularization. After learning, we discard the classi @rs
matrixB 2 f 0; 1g¢ N, whereK is the number of classes, and keep only the projection matrix.



7. Experimental validation

We rst describe the datasets and features we used in our
experiments. We then provide results for the metric learnin
and attribute-based approaches. Finally, we presenttisesul
for the two label-image embedding techniques: CCA and
joint classi er and subspace learning.

7.1. Datasets and features

Datasets We use the two following public benchmarks
for evaluation. INRIA Holidays [17] contains 1,491 im-
ages of 500 scenes and objects. One image per scene / ob-
ject is used as query to search within the remaining 1,490
images and accuracy is measured as the Average Precision
(AP) averaged over the 500 queries (mAP). Theversity Figure 2. First row: random images from the ImageNet categor
of Kentucky BenchmarJKB)* [25] contains 10,200 im-  n02930766 (“cab, hack, taxi, taxicab”). Second row: nO3086
ages of 2,550 objects. Eachimage is used in turn as query t¢ mortar”). Third row: n04147183 (“Schooner).
search within the 10,200 images and accuracy is measured
as4 recall@4 averaged over the 10,200 queries. Hence, R= 16 32 64 128 256 512
the maximum achievable score is 4 on this dataset. PCA 531 613 680 723 750 76.8

. . IL 521 629 671 732 758 77.1

We use the ImageNet Large Scale Visual Recognition CL 368 542 651 689 754786
Challenge (ILSVRC) 2010 datasebr learning purposes.
We use it both for unsupervised learningd to learn a Table 1. Subspace learning as metric learning. Results tiddys
PCA) and for supervised learning.¢ to learn a metric,  (mAP, in %) when learning with Instance Level (IL) and Catggo
attributes, CCA, etc.) This dataset contains 1,000 classed evel (CL) labels.
and consists of 3 sets: a training, a validation and a test set

In our experiments, we only make use of the training set R = 16 32 64 128 256 512
which contains 1.2M images. PCA 256 282 3.01 308 315 3.18
For the large-scale experiments reported in Sectign L 109 199 255 290 3.07 3.16

we also use a subset of 1M ImageNet images to serve as €L 180 237 278 295 309 316

distractors. They were rgndomly sampled from the fuI_I Im- Table 2. Subspace learning as metric learning. Results oB UK
ageNet datase®] (excluding the ILSVRC 2010 categories) (4 recall@4) when learning with Instance Level (IL) and Cate-

gory Level (CL) labels.
Features. We extract 128-dimensional SIFT descrip-

tors [24] and 96-dimensional color descriptofZ] on reg-

ular grids at multiple scales. Contrarily to most previ- 7.2. Results with metric learning

ous instance-level retrieval works, we do not make use of ) ) ) )
interest-point detectors. We found dense extraction talyie _ YWhen learning a metric for a target subspace dimension
somewhat better (resp. worse) results on Holidays (resp.R: W0 parameters need to be tuned: the step saswell
UKB). Note however that this saves the interest-point de- &S the number of iteratiomster . We performed two sets of
tection time which is substantial in our large-scale experi &XPeriments. Inthe rst set of experiments we learn the sub-
ments. These features are reduced to 64 dimensions wittFPace from ILSVRC 2010. To avoid tuningandniter on
PCA. We compute separately for each descriptor a 2’048_the test da'Fa, we validated our Holldays_ results on UKB and
dimensional Fisher Vector (FV) which is power- and L2- Viceé versaj.e. we report results on Holidays (resp. UKB)
normalized P9, 30]. The SIFT and color FVs are subse- With the parameters that lead to the best results on UKB
quently concatenated, thus yielding a 4,096-dim image de-("€SP- Holidays). This shows the ability of the learning
scriptor. The distance between two FVs is computed with algorithm to generalize to new data. In the second set of ex-

a dot-product 9. This provides a baseline of 77.4% on periments, we learn the subspace from instance-levedabel
Holidays and 3.19 on UKB. For the Holidays experiments, we therefore trained the sub-

space on UKB and vice-versa. In this set of experiments,
3 — . andniter were tuned directly to maximize test accuracy
http://lear.inrialpes.fr/ ~jegou/data.php hich ai fair ad hi h
Shittp:/fwww.vis. uky.edu/ -~ stewe/ukbench/ which gives an unfair advantage to this approach.
Shttp://www.image-net.org/challenges/LSVRC/2010 The metric learning results are reported in Tadlesd




Holidays UKB R= 16 32 64 128 256 512
FV (4,096 dim) 774%  3.19 FV 531 613 680 723 750 768
Attr (1,000 dim) 76.2%  3.27 FV+Attr 493 603 664 712 752 76.8
FV +Attr (5,096 dim)  78.1%  3.27

Table 4. Combining FVs and attributes after PCA. Results ok H
Table 3. Combining FVs and attributes. Results on Holidays idays (mAP, in %).
(mAP, in %) and UKB (4 recall@4).

nature ofR dimensions, FVs and attributes are reduced to
2 and compared to the PCA baseline. We can draw the tWoR=2 dimensions and concatenated. Again, we tune the rel-
following conclusions. First, metric learning with inst&  ative weight of the FV part with respect to the attribute part
level labels (IL) does not signi cantly improve accuracy on  Table4 compares this approach with the PCA baseline on
Holidays or UKB. Itis actually signi cantly worse thanthe  the Holidays dataset and we observe no improvement.
PCA baseline on UKB. We believe this is because the train-  These results somewhat contradict thoselaf fvho re-
ing datasets (UKB for Holidays and Holidays for UKB) are  ported a signi cant improvement on Holidays when merg-
too small to learn a meaningful subspace. Note that we arejng Fvs and attributes. We believe this is because the fea-
not aware of any signi cantly larger dataset with instance- tres used byl[1] to learn the attributes contained informa-
level labels. Second, metric learning on category-level la tjon not available in the FV. For instance, their attributes
bels (CL) yields poor results, especially for a small number ysed, among others, color information, while their FVs
of dimension®R. We observe a small improvementwith re-  \yere computed from SIFT descriptors only. To test this con-
spect to the PCA baseline on Holidays for a larBefe.g  jecture, we computed 2,048-dimensional FVs using only
R = 512). Our intuition to explain these poor results is g|FT descriptors as well as 1,000-dimensional attribue ve
the following one: although images within the same cate- tors computed from color-only descriptors. Combining the
gory might be visually dissimilarc(f. Fig 2), metric learn-  py and attributes in this case makes a signi cant difference
ing tries to enforce them explicitly to be closer to each othe gp, Holidays: from 68.5.% using SIFT FVs (2,048 dimen-
than to images in other categories. sions) to 76.2% when concatenating SIFT FVs and color
7 3. Results with attributes attr_ibutes (3,043 dimensions). We beIieV(_e this_experiment

validates our point. Note that we can obtain a similar accu-

To learn the attribute classiers, we rst extract from racy of 76.8% in a simple manner, by reducing the dimen-

the 1.2M ILSVRC 2010 training images the same 4,096- sionality of the 4,096-dimensional SIFT+color FV to 512
dimensional FV features we use for retrievalf( section dimensions.
7.1). We then learn 1,000 one-vs-all binary linear SVMs  Our conclusion is therefore that attributes do not seem
using SGD. Note that learning classi ers on FVs makes to improve instance-level retrieval signi cantly on these
sense as shown for instance B0 Given an image, we  datasets.
construct its attribute vector by concatenating the 1,000
classi er scores, which yields a 1,000-dimensional vector 7.4. Results with label-image embedding
Hence, the computation of the attribute scores can be un-
derstood as a linear projection in a 1,000-dimensional sub-
space. The attribute vector is subsequently L2-normalized
and we use the dot-product as a measure of similarity. Fol-
lowing [11], we also report results combining the FV and
the attributes. As suggested byl], we apply a weighting
factor to increase the contribution of the FV. To avoid tun-
ing this parameter on the test data, the optimal weight for

Holidays (resp. UKB) was cross-validated on UKB (resp. learning): the step sizeand the number of iteratiomster .

Holidays). Results are reported in TaBleWe observe that ) : . :
As was the case in our previews experiments, to avoid tun-

attributes perform slightly worse than FVs on Holidays and . : .
slightly better on UKB. We also note that there seems to bemg the parameters on the test data, we validate the Holidays

. : : (resp. UKB) parameters on UKB (resp. Holidays). We re-
Ilttle_complementant.y between FVs and at.tnbutes. port results on Holidays in Tableand UKB in Tables.
Since our focus is on subspace learning, we also per-

form dimensionality reduction by applying PCA to the FV We can make the two following observations. First, both

. " . label-image embedding methods improve over the PCA
and the attributes independently and by concatenating theDaseline gespecially forga small numbepr of dimensirsf
resulting vectors, as suggested in]f To produce a sig- ’

the subspacee(g R = 32). Second, JSCL generally yields
Shttp:/leon.bottou.org/projects/sgd better results than CCA. This seems to indicate that using a

We now report results for those two approaches which
perform an embedding of images and labels in a common
subspace: CCA and the proposed Joint Subspace and Clas-
si er Learning (JSCL).

For both the CCA and JSCL, we use again ILSVRC 2010
for learning. For CCA, there is a single parameter to tune:
the regularization parametelc.f. sections). As for JSCL,
there are two parameters to tune (as was the case for metric




R= 16 32 64 128 256 512 8
PCA 531 613 680 723 750 768
CCA 545 629 710 747 77.679.0
JSCL 56.7 67.7 73.6 764 78.378.9

Table 5. Results of CCA and the proposed JSCL as compared to

the PCA baseline on Holidays (mAP, in %). ;
o
<
R= 16 32 64 128 256 512 E g
PCA 256 282 301 308 315 3.18 30 PCA —+— |
CCA 252 290 311 322 329 3.32 e P —
JSCL 267 304 323 331 336 336 200 CEA+PS et |
? JSC|I_+PQ Y-
Table 6. Results of CCA and the proposed JSCL as compared to 10 32 64 128 256 512
the PCA baseline on UKB (4 recall@4). Number of Dimensions

large margin framework enables to uncover a more discrim-
inative subspace. On UKB, we point out that we can both
reduce the dimensionality of the initial 4,096-dimensiona
FV representation down to 256 dimensions and increase thex

retrieval accuracy from 3.19 to 3.36. g

Since our focus is on large-scale retrieval, we also per- %
formed an evaluation with a large set of distractor images ~
as is common practice (seeg [17, 27, 20, 11]). In our ex- 2 CCA —a—
periments, we use 1M ImageNet imaged.(section7.1). PCAT LG serr
Hence, when running a search on Holidays (resp. UKB), T JCS%’CJ;ES e
the system compares the_query to the 1,490 (resp. 10,200) 157 " 8 2;6 1o
database images + 1M distractors. We ran two sets of ex- Number of Dimensions

periments. In the rst set of experiments, the dimension-

ality of the FV is reduced (through PCA, CCA or JSCL) Figure 3. Large-scale results of CCA and the proposed JSCL as
but no further compression is applied. In the second set 0fcompa}red to the PCA baseline. Top: Holidays + 1M distractors
experiments, the dimensionality of the FV is reduced and a (MAP in %). Bottom: UKB + 1M distractors (4 recall@4).

Product Quantization (PQJ.{] is further applied to encode

the descriptors. We chose PQ since it yields state-of-the-a ¢5r more complex probleme,g when the relevant images
codes when combined with dimensionality reductian] [ are lost in a sea of irrelevant ones.

but other encoding techniques could have been applied too. Finally, Figure 1 shows qualitative results on Holi-

In a nutshell, PQ splits the large FV into small sub-vectors days+1M using PQ codes of 128 bits. We show the top
and ap_plies a separate Vector Quantizer (_VQ) to each subg yoq s on 4 queries and compare the PCA and JSCL em-
vector independently (seé ] for more details). In our ex- o 44ings. The queries have been chosen such as that there is
periments we use sub-vectors of 8 dimensions and each sub, ntersection between the top PCA and JSCL results. We
vector is encoded on 8 bits. Hence, with such a con gura- oserye how the JSCL results are semantically more consis-
tion, if PQ takes as input a K-dimensional vector, it oUtputs o« than those of PCA. even if sometimes PCA nds true

a K bits code. ] ] positives that JSCL misses, such as thakdf
Results for Holidays and UKB are presented in F&.

We can draw the fo_IIowing conclusions. As_ in the case 8. Conclusion

of small-scale experiments, CCA and JSCL improve over

PCA. Moreover, JSCL seems to have an edge over CCA. At the beginning of this article, we raised the follow-
These observations are valid whether PQ encoding is ap-ing question: can category-level labels be used to improve
plied or not. The differences with the PCA baseline seem instance-level image retrieval? We can now answer this
more acute in large-scale experiments than in small-scalequestion positively. To reach this conclusion, we experi-
experiments. For instance, the retrieval accuracy is im- mented with four learning techniques: the rst one is based
proved from 39.3% with PCA to 48.6% with JSCL with on a metric learning framework, the second one on at-
R = 32 (without compression) on Holidays. This seems to tribute representations, the third one on Canonical Corre-
indicate that learning good projections has a larger impactlation Analysis (CCA) and the fourth one on Joint Sub-



space and Classi er Learning (JSCL). While the rst three [11]
approaches had been applied to some extent to the image
retrieval problem in the past, we believe we are the rst to
show the usefulness of JSCL in this context.

Our experimental evaluation showed that metric- [13]
learning and attributes do not improve signi cantly ovee th
baseline system. In some cases, it can even lead to a del4l
crease in accuracy. We also showed that CCA and JSCL
which both consist in embedding labels and images in a
common subspace, can lead to substantial improvementge)
especially in large-scale experiments. Overall, JSClLdgiel
the best results and we believe that it superiority with re- [17]
spect to the simpler CCA approach comes from the use of a
large margin formulation. (18]

Thus, a key conclusion of our work is that one might get
a superior performance with a method such as JSCL whichl19]
optimizes a categorization objective function (which is-co [20]
sistent with the category-level labels we use for training b
which is only loosely consistent with our retrieval objec-
tive) than with a method such as metric learning which op- [21]
timizes a retrieval objective function (which is consigten
with our instance-level retrieval problem but which is in- 22]
consistent with our category-level labels).

We nally note that those methods which jointly embed [23]
labels and images in a common subspace, such as CCA
and JSCL, have an additional advantage which we have noi24]
exploited in this work. Indeed, since labels and images
have a common representation, one could easily performyzs;
guery-by-example and query-by-text searches within a uni-
ed framework. We will explore the advantages of such an [26]
approach in future work.

[12]
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