Perceptual Image Retrieval by Adding Color Information to the Shape Context Descriptor

Marçal Rusiñol, Farshad Noorbakhsh, Dimosthenis Karatzas, Ernest Valveny and Josep Lladós

Computer Vision Center, Dept. Ciències de la Computació
Edifici O, Univ. Autònoma de Barcelona
08193 Bellaterra (Barcelona), Spain
Email: {marcal,farshad,dimos,ernest,josep}@cvc.uab.cat

Abstract—In this paper we present a method for the retrieval of images in terms of perceptual similarity. Local color information is added to the shape context descriptor in order to obtain an object description integrating both shape and color as visual cues. We use a color naming algorithm in order to represent the color information from a perceptual point of view. The proposed method has been tested in two different applications, an object retrieval scenario based on color sketch queries and a color trademark retrieval problem. Experimental results show that the addition of the color information significantly outperforms the sole use of the shape context descriptor.

Keywords—Graphics recognition; multimedia retrieval; perceptual description; shape context; color naming.

I. INTRODUCTION

In the last two decades, with the popularization of the internet, a huge amount of information resources have emerged. However, not all the information is easily accessible. More and more, an explosively growing amount of information is stored in image formats. Since search engines index and retrieve information in terms of textual queries, there is a lack of accessibility to this particular kind of information. Textual search of images rely on the metadata they have associated instead of analyzing the actual contents of the images. In order to tackle this problem, in the last years a lot of effort has been devoted to the problem of content-based image retrieval (CBIR).

One of the possible query paradigms in CBIR applications is known as query-by-sketch. The user creates the query image with a drawing tool. The systems working with sketched queries must be able to handle the severe deformations of the sketches in order to retrieve the images which are perceptually similar to the sketches. In this particular scenario, most of the literature just relies on shape information. These approaches try to match the sketches with the object’s contours as in [1], [2]. The addition of color as a discriminant visual cue when trying to retrieve images by perceptual similarity seems important. However, a limited amount of work dealing with colored sketches can be found in the literature, as for instance [3], [4]. The same applies to the problem of logo recognition and retrieval. When registering a new trademark it is important to avoid trademark conflicts and to be sure that no other trademark that looks similar to the new one is already registered. In that particular scenario, the retrieval of logos by visual similarity has great interest. However, most of the works on logo retrieval are focused on the analysis of the logos’ contours or regions without taking into account the color information.

Inspired by the work of Diplaros et al. [5], we propose to enhance the shape context descriptor with color information. A color naming algorithm is used in order to represent the color information from a perceptual point of view. We tested the proposed method in two different applications, an object retrieval scenario based on color sketch queries, and a color trademark retrieval problem.

The paper is organized as follows. In the next section we give the basic background of the descriptors we use and we detail the method. In Section 3, the experimental evaluation of the method and the results are provided. Finally, in Section 4 we provide some conclusions about the work.

II. IMAGE DESCRIPTION

We give in this section the basic background on the shape context descriptor and the color naming algorithm that we use. Then we will detail how these two descriptors are combined and how the images are matched.

A. Shape Context

The shape context (SC) descriptor was proposed by Belongie et al. in [6]. It allows to measure shape similarity by recovering point correspondences between two objects. In the first step, a set of interest points are selected. Edge elements from the shape are sampled in order to obtain a fixed number of n points p_i. In the next step, a histogram using log-polar coordinates captures the distribution of points within the plane relative to each point of the shape. For each point p_i of the shape, a histogram

$$S_i(k) = \#\{q \neq p_i : (q - p_i) \in \text{bin}(k)\} \quad (1)$$

with 5 bins for the radial distance $\log r$ and 12 bins for the angles θ is computed. Each bin k counts the occurrences of all the points q of the shape that fall into it. Translational invariance comes naturally to shape context since all the
Figure 1. Example of the color shape context descriptor.

histograms are computed from reference points. Scale invariance is obtained by normalizing all radial distances by the mean distance between all the point pairs in the shape. Angles at each point are measured relative to the direction of the tangent at that point to provide invariance to rotation.

B. Color Naming

In order to represent the perceptual color information of the objects, we apply a color naming model. A color naming method provides a way to map a color value to one of the predefined number of semantic color groups corresponding to the color names used in everyday communications. Color naming models can be defined through psychophysical measurements [7] or through statistical learning [8]. We use the method proposed by van de Weijer et al. in [8]. A probabilistic latent semantic analysis (PLSA) model learned on a set of images retrieved from Google, results in a $32 \times 32 \times 32$ lookup table which allows to map pixel values to color names. Eleven basic color terms are considered in this approach, namely black, white, red, green, yellow, blue, brown, orange, pink, purple and gray. By applying this color naming algorithm to an image we obtain a color quantization based on how humans would perceive and describe the color information.

We define the color descriptor K as the vector containing the probability of the color names for a particular point of the image as

$$K = \{p(n_1|f(x)), p(n_2|f(x)), ..., p(n_{11}|f(x))\}$$ \hspace{1cm} (2)

where n_i is the i-th color name and $f(x)$ the color value of a given pixel x. $p(n_i|f(x))$ is then the probability of a color name given a pixel value.

C. Local Color Names Histograms

For each sampled point p_i of the image we obtain a local description of the shape around this point by using the shape context histogram S_i. In order to add color information to this shape description we apply the color naming model locally at the same point p_i. A circular mask is defined as the region of interest centered at p_i. In order to keep invariance to scale, the size of the mask is computed with relation to the mean distance between all the points pairs in the shape.

All the pixels x_j in the region of interest of a point p_i have an associated color descriptor K_j. The local color name histogram C_i is then defined the accumulation of evidences of each of the eleven color names computed as

$$C_i(k) = \frac{1}{N} \sum_{j=1}^{N} p(n_k|f(x_j))$$ \hspace{1cm} (3)

where N is the total number of pixels in the mask and k is each of the eleven color names. The color shape context descriptor (CSC) is the combination of both descriptors S_i and C_i at each point of the shape. We can see a visual example of color shape context descriptors in Fig. 1. For the point p_i (plotted in blue) in Fig. 1(a) the shape context descriptor S_i is shown in Fig. 1(b). The local color names distribution in Fig. 1(c) comes from the application of the color naming model to the pixels from the mask.

D. Matching

In order to match the sketch with the images in the collection we have to find the point correspondences. The way to compute the matching among the two set of points is by using a bipartite graph matching approach that puts in correspondence points having similar shape and color descriptions. The distance between a couple of points p_i and p_j is computed as

$$d(p_i, p_j) = \chi^2(S_i, S_j) \times \chi^2(C_i, C_j)$$ \hspace{1cm} (4)

by using the χ^2 distance

$$\chi^2(A, B) = \frac{1}{2} \sum_{m=1}^{k} \frac{[A(m) - B(m)]^2}{A(m) + B(m) + \epsilon}.$$ \hspace{1cm} (5)

By multiplying the distance of the shape context descriptor and the local color descriptor in eq. 4, we reinforce the
matches which are similar in shape and color and we hinder
the cases where we have similar color but different spatial
distance or vice versa. In addition, the distance
is kept normalized in [0, 1]. We tried other combination
methods such as the minimum of both distances or the
inverse of the absolute distance difference, obtaining worse
performances than with the multiplication. Given a set of
local distances \(d(p_i, p_j) \) between all pairs of points, the
final distance between the sketch query and the image is
determined by minimizing the total cost of matching

\[
H(\pi) = \sum_i d(p_i, p_{\pi(i)})
\]

where \(\pi \) is a permutation of points and \(H \) is computed
by applying the Hungarian method. In order to obtain a
more robust matching, the most usual techniques involve
the computation of an affine transform that matches the
set of points from one shape to another. However, in our
application scenarios we do not have to face this kind of
transformations.

III. EXPERIMENTAL RESULTS

To evaluate our proposed work, we have chosen two
different datasets. The ALOI dataset [9] includes in 1000
objects, each one with 12 different illuminations. Twenty
objects from the ALOI dataset were sketched by eleven
different users (details can be found in [4]) and are taken as
queries, we can appreciate the difficulty of using this kind of
perceptual query representation in a retrieval framework in
Fig. 3. The second dataset consists of 323 color trademarks.
Fourteen classes are taken as models and three queries are
used per class.

We can see in Fig. 2 some qualitative results of the object
retrieval by sketches experiment. As we can see, most of the
results are visually similar in the case of the CSC method,
whereas a lot of false alarms appear in the case of just using
shape as visual cue to describe the objects. In Fig. 4 we
provide the quantitative results of the whole experiment by
giving the receiver operating characteristic (ROC) curves
plotting the true positive rates (TPR) and the false positive
rates (FPR), the area under curve (AUC) and mean average
precision (AveP) measures in Table I. Note that these results
are computed by looking at the objects’ class, regardless of
the similarity among them. The blue cars in Fig. 2(a) that
are not highlighted in green are counted as false alarms even
if they are perceptually similar. Even despite this fact, we
can appreciate the CSC method outperforms in all the cases
the SC method.

For the second dataset the issue is different as no exact
matches are sought for, but similar logos. Such a scenario
would be useful in a trademark search case in an intellectual
property office when the users want to retrieve similar logos
than the ones they want to register. In this case there is a
need for a different evaluation procedure since a ground truth
is not available, we propose to use a psychophysical one.
Ten users were asked to rank the five top similar logos for
Figure 4. ROC curve for sketched queries over the ALOI dataset

Figure 4. ROC curve for sketched queries over the ALOI dataset

a given query and a set of logos extracted from the results of both the SC and the CSC. In this case we can see that even if the user judgement of similarity is usually scattered among the set of logos, a small set of logos are selected by most of the users. We took these logos as the groundtruth and we computed the amount of these logos present in the results. Retrieving logos using the SC descriptor, a 35.5% of the top fifty results were marked as similar by humans. In the case of using the CSC method the score went up to 37.3%. We can see in Fig. 5 an example of this labelling where the green boundingboxes correspond to positive logos marked by the users.

Table I

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>AUC (%)</th>
<th>AveP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>96.48</td>
<td>42.15</td>
</tr>
<tr>
<td>SC</td>
<td>93.71</td>
<td>40.81</td>
</tr>
</tbody>
</table>

Figure 5. First ten classes for the trademark AVIS. (a) Color shape context. (b) Shape context

IV. CONCLUSIONS

In this paper we have developed and tested a method for image retrieval based on the perception of color and shape by defining the color shape context descriptor. The proposed method has proven to give good results in applications where no exact matches are sought for, but in which the user wants to retrieve similar objects to its query. Both the psychophysical evaluation and the qualitative results show that combining the local color features with the shape descriptor gives better results than just using shape as a visual cue.

ACKNOWLEDGMENTS
This work has been partially supported by the Spanish projects TIN2006-15694-C02-02, TIN2008-04998, TIN2009-14633-C03-03 and CONSOLIDER - INGENIO 2010 (CSD2007-00018). Logo images were kindly provided by ITESOFT (www.itesoft.fr).

REFERENCES