A global approach to vision-based pedestrian detection for advanced driver assistance systems
Place: Large Lecture Room, CVC
Affiliation: Computer Vision Centre, Dep. of Computer Science, UAB.
At the beginning of the 21th century, traffic accidents have become a major problem not only for developed countries but also for emerging ones. As in other scientific areas in which Artificial Intelligence is becoming a key actor, advanced driver assistance systems, and concretely pedestrian protection systems based on Computer Vision, are becoming a strong topic of research aimed at improving the safety of pedestrians. However, the challenge is of considerable complexity due to the varying appearance of humans (e.g., clothes, size, aspect ratio, shape, etc.), the dynamic nature of on-board systems and the unstructured moving environments that urban scenarios represent. In addition, the required performance is demanding both in terms of computational time and detection rates. In this thesis, instead of focusing on improving specific tasks as it is frequent in the literature, we present a global approach to the problem. Such a global overview starts by the proposal of a generic architecture to be used as a framework both to review the literature and to organize the studied techniques along the thesis. We then focus the research on tasks such as foreground segmentation, object classification and refinement following a general viewpoint and exploring aspects that are not usually analyzed. In order to perform the experiments, we also present a novel pedestrian dataset that consists of three subsets, each one addressed to the evaluation of a different specific task in the system. The results presented in this thesis not only end with a proposal of a pedestrian detection system but also go one step beyond by pointing out new insights, formalizing existing and proposed algorithms, introducing new techniques and evaluating their performance, which we hope will provide new foundations for future research in the area.