Towards Deep Image Understanding: From pixels to semantics
Place: Large Lecture Room
Affiliation: Computer Vision Centre and Dep. of Computer Science, UAB.
Understanding the content of the images is one of the greatest challenges of computer vision. Recognition of objects appearing in images, identifying and interpreting their actions are the main purposes of Image Understanding. This thesis seeks to identify what is present in a picture by categorizing and locating all the objects in the scene.
Images are composed by pixels, and one possibility consists of assigning to each pixel an object category, which is commonly known as semantic segmentation. By incorporating information as a contextual cue, we are able to resolve the ambiguity within categories at the pixel-level. We propose three levels of scale in order to resolve such ambiguity.
Another possibility to represent the objects is the object detection task. In this case, the aim is to recognize and localize the whole object by accurately placing a bounding box around it. We present two new approaches. The first one is focused on improving the object representation of deformable part models with the concept of factorized appearances. The second approach addresses the issue of reducing the computational cost for multi-class recognition. The results given have been validated on several commonly used datasets, reaching international recognition and state-of-the-art within the field.