The car in the matrix: CARLA
CARLA (Car Learning to Act) is an open-source simulator desgined within Academia as an autonomous driving research tool. Developed by the Computer Vision Center, along with Intel Labs and the Toyota Research Institute, it is a platform in which to support the development, training and validation of autonomous urban driving systems. CARLA was presented at the First Conference in Robot Learning at Mountain View, CA by CVC/UAB PhD candidate Felipe Codevilla.
Training an autonomous car to drive is a challenge that is being tackled in research all over the world. Cars are performing simple driving tasks on real, actual roads. However, teaching these cars to drive with zero incidents and in the most varied scenarios as possible isn't trivial. There are plenty of rare and odd situations of which one sole car might never encounter and it needs to know how to react real-time. “Imagine a child running towards the road, or a very dusty evening with the sun lying low and frontally into the car’s cameras,” explains Felipe Codevilla, co-author of the paper ‘CARLA: An open urban driving simulator’. “You expect the car to be able to respond to these situations, but you need to have trained it first”. CARLA enables researchers to trigger the different, unexpected situations a car might come up against. As added by Dr. Antonio López, head of the ADAS team at CVC and also co-author of the paper. “CARLA allows us to drive in different environments, lighting conditions, weather changes or urban scenarios”. The physical world represents clear difficulties for autonomous driving research, not only infrastructure costs and logistic difficulties, but funds and manpower involved are high and costly. Furthermore, a single vehicle is far from sufficient for collecting the requisite data that cover the multitude of corner cases that need to be processed for both training and validations. CARLA has been developed to overcome such challenges and give researchers a new, open source, research-oriented platform. Although the use of simulators for autonomous driving is not new, and videogame technology has been used to train autonomous cars in the past, existing simulation platforms are limited, lacking numerous basic elements such as pedestrians, traffic rules, intersections, or other complications that may arise constantly in real life driving. Commercial videogames, such as The Grand Theft Auto have also been tested in autonomous driving research, but the privileged information that the car needs to comprehend its environment remains unavailable in videogames due to their commercial nature. CARLA, being built from zero for autonomous driving research purposes, gives the car access to privileged information such as GPS coordinates, speed, acceleration and detailed data on a number of infractions.
Related articles: CARLA in the Media Towards A No Driver Scenario: Autonomous And Connected Cars At The Computer Vision Center The Future Of Autonomous Cars: Understanding The City With The Use Of Videogames Compitiendo Contra La Inteligencia Artificial Del Coche Autónomo