CVC has a new PhD on its record!
Abstract:
In the current work, we identify several problems of current tracking systems. The lack of large-scale labeled datasets hampers the usage of deep learning, especially end-to-end training, for tracking in TIR images. Therefore, many methods for tracking on TIR data are still based on hand-crafted features. This situation also happens in multi-modal tracking, e.g. RGB-T tracking. Another reason, which hampers the development of RGB-T tracking, is that there exists little research on the fusion mechanisms for combining information from RGB and TIR modalities.
One of the crucial components of most trackers is the update module. For the currently existing end-to-end tracking architecture, e.g, Siamese trackers, the online model update is still not taken into consideration at the training stage. They use no-update or a linear update strategy during the inference stage. While such a hand-crafted approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update. To address the data-scarcity for TIR and RGB-T tracking, we use image-to-image translation to generate a large-scale synthetic TIR dataset. This dataset allows us to perform end-to-end training for TIR tracking. Furthermore, we investigate several fusion mechanisms for RGB-T tracking. The multi-modal trackers are also trained in an end-to-end manner on the synthetic data. To improve the standard online update, we pose the updating step as an optimization problem which can be solved by training a neural network. Our approach thereby reduces the hand-crafted components in the tracking pipeline and sets a further step in the direction of a complete end-to-end trained tracking network which also considers updating during optimization.
Keywords: computer vision, deep learning, visual tracking, multi-modal tracking, ent-to-end training, learning to update.