Statistical framework and prior information modeling in handwritten word-spoting

Statistical framework and prior information modeling in handwritten word-spoting

Place: Large Lecture Room, Computer Vision Center

Affiliation: Computer Vision Center / Univ. Autonoma de Barcelona, Spain  

Handwritten word-spotting (HWS) is the pattern analysis task that consists in finding keywords in handwritten document images. So far, HWS has been applied mostly to historical documents in order to build search engines for such image collections. This thesis addresses the problem of word-spotting for detecting important keywords in business documents. This is a first step towards the process of automatic routing of correspondence based on content.

However, the application of traditional HWS techniques fails for this type of documents. As opposed to historical documents, real business documents present a very high variability in terms of writing styles, spontaneous writing, crossed-out words, spelling mistakes, etc. The main goal of this thesis is the development of pattern recognition techniques that lead to a high-performance HWS system for this challenging type of data.

We develop a statistical framework in which word models are expressed in terms of hidden Markov models and the a priori information is encoded in a universal vocabulary of Gaussian codewords. This systems leads to a very robust performance in word-spotting task. We also find that by constraining the word models to the universal vocabulary, the a priori information of the problem of interest can be exploited for developing new contributions. These include a novel writer adaptation method, a system for searching handwritten words by generating typed text images, and a novel model-based similarity between feature vector sequences.

Thesis Jose Rodriguez