Visual Saliency for Object Recognition and Object Recognition for Visual Saliency

CVC has a new PhD on its record!

Carola Figueroa successfully defended her dissertation on Computer Science on March 08, 2021, and she is now Doctor of Philosophy by the Universitat Autònoma de Barcelona.

Download thesis

What is the thesis about?

For humans, the recognition of objects is an almost instantaneous, precise and extremely adaptable process. Furthermore, we have the innate capability to learn new object classes from only few examples. The human brain lowers the complexity of the incoming data by filtering out part of the information and only processing those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple glance the most important or salient regions from an image. This mechanism can be observed by analyzing on which parts of images subjects place attention; where they fix their eyes when an image is shown to them. The most accurate way to record this behavior is to track eye movements while displaying images.

Computational saliency estimation aims to identify to what extent regions or objects stand out with respect to their surroundings to human observers. Saliency maps can be used in a wide range of applications including object detection, image and video compression, and visual tracking. The majority of research in the field has focused on automatically estimating saliency maps given an input image. Instead, in this thesis, we set out to incorporate saliency maps in an object recognition pipeline: we want to investigate whether saliency maps can improve object recognition results.

In this thesis, we identify several problems related to visual saliency estimation. First, to what extent the estimation of saliency can be exploited to improve the training of an object recognition model when scarce training data is available. To solve this problem, we design an image classification network that incorporates saliency information as input. This network processes the saliency map through a dedicated network branch and uses the resulting characteristics to modulate the standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive experiments on standard benchmark datasets for fine-grained object recognition, we show that our proposed architecture can significantly improve performance, especially on dataset with scarce training data.

Next, we address the main drawback of the above pipeline: SMIC requires an explicit saliency algorithm that must be trained on a saliency dataset. To solve this, we implement a hallucination mechanism that allows us to incorporate the saliency estimation branch in an end-to-end trained neural network architecture that only needs the RGB image as an input. A side-effect of this architecture is the estimation of saliency maps. In experiments, we show that this architecture can obtain similar results on object recognition as SMIC but without the requirement of ground truth saliency maps to train the system.

Finally, we evaluated the accuracy of the saliency maps that occur as a side-effect of object recognition. For this purpose, we use a set of benchmark datasets for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human eye-tracking experiments. Our results show that these saliency maps can obtain competitive results on benchmark saliency maps. On one synthetic saliency dataset this method even obtains the state-of-the-art without the need of ever having seen an actual saliency image for training.

Keywords: computer vision, visual saliency, fine-grained object recognition, convolutional neural networks, images classification.