Deep Metric Learning for re-identification, tracking and hierarchical novelty detection

Abstract: Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This … Read more

Categories Phd

Self-supervised learning for image-to-image translation in the small data regime

Abstract: The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision since 2012 led to a dominance of the image understanding paradigm consisting in an end-to-end fully supervised learning workflow over large-scale annotated datasets. This approach proved to be extremely useful at solving a myriad of classic and new computer vision tasks with … Read more

Categories Phd

Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning

Abstract: Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many … Read more

Categories Phd

Towards Efficient and Robust Convolutional Neural Networks for Single Image Super-Resolution

Abstract: Single image super-resolution (SISR) is an important task in image processing which aims to enhance the resolution of imaging systems. Recently, SISR has witnessed great strides with the rapid development of deep learning. Recent advances in SISR are mostly devoted to designing deeper and wider networks to enhance their representation learning capacity. However, as … Read more

Categories Phd

Monocular Depth Estimation for Autonomous Driving

Abstract: 3D geometric information is essential for on-board perception in autonomous driving and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor suites. As part of these suites, we can find LiDARs, which are expensive active sensors in charge of providing the 3D geometric information. Depending on the operational conditions for the AV, calibrated stereo rigs … Read more

Categories Phd

Towards Smart Fashion: Visual Recognition of Products and Attributes

Abstract: Artificial intelligence is innovating the fashion industry by proposing new applications and solutions to the problems encountered by researchers and engineers working in the industry. In this thesis, we address three of these problems. In the first part of the thesis, we tackle the problem of multi-label image classification which is very related to … Read more

Categories Phd

Towards Practical Neural Image Compression

Abstract: Images and videos are pervasive in our life and communication. With advances in smart and portable devices, high capacity communication networks and high definition cinema, image and video compression are more relevant than ever. Traditional block-based linear transform codecs such as JPEG, H.264/AVC or the recent H.266/VVC are carefully designed to meet not only … Read more

Categories Phd

Reducing Label Effort with Deep Active Learning

Abstract: Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition applications, such as image classification, detection and segmentation. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Active learning is a paradigm aimed at reducing the annotation effort by training the model on … Read more

Categories Phd

Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation

Abstract:  In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training … Read more

Categories Phd